[1] Watts D, Strogatz S. Collective dynamics of ``small-world" networks. Nature, 1998, 393: 440--442
[2] Erd\"os P, Rényi A. On random graphs. Publications Mathematicae, 1959, 6: 290--297
[3] Barabàsi A, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509--512
[4] Barabàsi A, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A, 1999, 272: 173--187
[5] Krapivsky P, Redner S, Leyvraz F. Connectivity of growing random networks. Physical review letters, 2000, 85: 4629--4632
[6] Dorogovtsev S, Mendes J F, Samukhin A. Structure of growing networks: Exact solution of the Barabasi-Albert model. Physical review letters, 2000, 85: 4633--4636
[7] Dorogovtsev S, Mendes J F. Effect of the accelerated growth of communications networks on their structure. Physical review E, 2001, 63: 025101
[8] Bollobás B, Riordan O M. Mathematical Results on Scale-free Random Graphs, I//Bornholdt S, Schuster H G eds. Handbook of Graphs and Networks: From the Genome to the Internet. Berlin: Wiley-VCH, 2003: 1--34
[9] Bollobás B, Riordan O, Spencer J, Tusn\'ady G. The degree sequence of a scale-free random graph process. Random Structures and Algorithms, 2001, 18: 279--290
[10] Holme P, Kim B. Growing scale-free networks with tunable clustering. Physical review E, 2002, 65: 026107
[11] Stolz O. Vorlesungen uber allgemiene Arithmetic. Stuttgart: Teubner, 1886
[12] Li X, Chen G. A local-world evolving network model. Physica A, 2003, 328: 274--286
[13] Shi D, Liu L, Zhu X, Zhou H. Degree distribution of evolving networks. Europhysics letters, 2006, 76: 731--737
|