数学物理学报 ›› 2010, Vol. 30 ›› Issue (5): 1322-1339.

• 论文 • 上一篇    下一篇

从积分几何的观点看几何不等式——纪念李国平院士吴新谋教授诞辰100周年

周家足|任德麟   

  1. 西南大学数学与统计学院 重庆 400715|贵州省黔东南民族职业技术学院 贵州凯里 556000 武汉科技大学理学院 武汉 430081
  • 收稿日期:2010-09-01 修回日期:2010-09-25 出版日期:2010-10-25 发布日期:2010-10-25
  • 基金资助:

    国家自然科学基金(10971167)资助

Geometric Inequalities-From Integral Geometry Point of View

 ZHOU Jia-Zu, REN De-Lin   

  1. School of Mathematics and Statistics, Southwest University, Chongqing 400715|Southeast Guizhou Vocational College of Technology for Nationalities, Guizhou Kaili 556000 School of Arts and Science, Wuhan University of Science and Technology, Wuhan 430081
  • Received:2010-09-01 Revised:2010-09-25 Online:2010-10-25 Published:2010-10-25
  • Supported by:

    国家自然科学基金(10971167)资助

摘要:

该文先介绍一些中国数学家在几何不等式方面的工作.作者用积分几何中著名的Poincarè公式及Blaschke公式估计一随机凸域包含另一域的包含测度, 得到了经典的等周不等式和Bonnesen -型不等式.还得到了一些诸如对称混合等周不等式、Minkowski -型和Bonnesen -型对称混合等似不等式在内的一些新的几何不等式.最后还研究了Gage -型等周不等式以及Ros -型等周不等式.

关键词: 凸集, 等周不等式, Bonnesen -型不等式, 等似不等式, Gage 等周不等式, Ros 等周不等式

Abstract:

This paper first surveys geometric inequalities achieved mainly by the Chinese mathematicians. By estimating the containment measure of
a random convex body to be contained in, or to contain, another convex body via the fundamental kinematic formula of Blaschke and the formula of Poincarè in plane integral geometry, we obtain the classical isoperimetric inequality and some Bonnesen-style inequalities. Then some new geometric inequalities, such as the symmetric mixed isoperimetric inequality, Minkowski  and Bonnesen style symmetric mixed isohomothetic inequalities, are obtained. We also investigate the Gage type isoperimetric inequalities and the Ros type isoperimetric inequalities.

Key words: Convex set, The isoperimetric inequality, The Bonnesen-style inequality, The isohomothetic inequality, The Gage isoperimetric inequality, The Ros isoperimetric inequality

中图分类号: 

  • 52A10