[1] Banchoff T F, Pohl W F. A generalization of the isoperimetric inequality. J Diff Geo, 1971, 6: 175--213
[2] Blaschke W. Vorlesungen \"uber Intergralgeometrie. Berlin: Deutsch Verlag Wiss, 1955
[3] Bokowski J, Heil E. Integral representation of quermassintegrals and Bonnesen-style inequalities. Arch Math, 1986, 47: 79--89
[4] Bonnesen T. Les Problèms des Isopèrimètres et des Isèpiphanes. Paris: Gauthier-Villars, 1929
[5] Bonnesen T, Fenchel W. Theorie der Konvexen K\"oeper. Berlin, New York: Springer-Verlag, 1974
[6] Bottema O. Eine obere Grenze f\"ur das isoperimetrische Defizit ebener Kurven. Nederl Akad Wetensch Proc, 1933, A66: 442--446
[7] Burago Yu D, Zalgaller V A. Geometric Inequalities. Berlin Heidelberg: Springer-Verlag, 1988
[8] Chen W, Howard R, Lutwark E, Yang D, Zhang G. A generalized affine isoperimetric inequality. J Geom Anal, 2004, 14(4): 597--612
[9] Croke C. A sharp four-dimensional isoperimetric inequality. Comment Math Helv, 1984, 59(2): 187--192
[10] Dai Y, Zhou J. Two new Bonnesen type inequalities. preprint
[11] Diskant V. A generalization of Bonnesen's inequalities. Soviet Math Dokl, 1973, 14: 1728--1731
[12] Enomoto K. A generalization of the isoperimetric inequality on S2 and flat tori in S3. Proc Amer Math Soc, 1994, 120(2): 553--558
[13] Flanders H. A proof of Minkowski's inequality for convex curves. Amer Math Monthly, 1968, 75: 581--593
[14] Gage M. An isoperimetric inequality with applications to curve shortening. Duke Math J, 1983, 50(4): 1225--1229
[15] Gardner R. Geometric Tomography. New York: Cambridge Univ Press, 1995
[16] Green M, Osher S. Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian J Math, 1999, 3(3): 659--676
[17] Grinberg E, Li S, Zhang G, Zhou J. Integral Geometry and Convexity, Proceedings of the International Conference. Singapore: World Scientific, 2006
[18] Grinberg E, Ren D, Zhou J. The symetric isoperimetric deficit and the containment problem in a plan of constant curvature. preprint
[19] Grinberg E. Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies. Math Ann, 1991, 291: 75--86
[20] Grinberg E, Zhang G. Convolutions, transforms, and convex bodies. Proc London Math Soc, 1999, 78: 7--115
[21] Gysin L. The isoperimetric inequality for nonsimple closed curves. Proc Amer Math Soc, 1993, 118(1): 197--203
[22] Hadwiger H. Die isoperimetrische Ungleichung in Raum. Elemente Math, 1948, 3: 25--38
[23] Hadwiger H. Vorlesungen \"uber Inhalt, Oberfl"ache und Isoperimetrie. Berlin: Springer, 1957
[24] Hardy G, Littlewood J E, Polya G. Inequalities. Cambradge, New York: Cambradge Univ Press, 1951
[25] Howard R. The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces. Proc Amer Math Soc, 1998, 126: 2779--2787
[26] Hsiung C C. Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary. Ann of Math, 1961, 73(2): 213--220
[27] Hsiang W Y. An elementary proof of the isoperimetric problem. Chin Ann Math, 2002, 23A(1): 7--12
[28] Klain D. Bonnesen-type inequalities for surfaces of constant curvature. Advances in Applied Mathematics, 2007, 39(2): 143--154
[29] Kotlyar B D. On a geometric inequality. (UDC513:519.21) Ukrainskii Geometricheskii Sbornik, 1987, 30: 49--52
[30] Ku H, Ku M, Zhang X. Isoperimetric inequalities on surfaces of constant curvature. Canadian J of Math, 1997, 49: 1162--1187
[31] Li M, Zhou J. An upper limit for the isoperimetric deficit of convex set in a plane of constant curvature. Science China Mathematics, 2010, 53(8): 1941--1946
[32] Li P, Yau S T. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent Math, 1982, 69: 269--291
[33] Lutwak E, Yang D, Zhang G. Sharp affine Lp Sobolev inequality. J Diff Geom, 2002, 62: 17--38
[34] Ma L, Zhou J. On Ros' type isoperimetric inequalities. preprint
[35] Ma L, Zhou J. On the curvature integrals of the plane oval. preprint
[36] Osserman R. The isoperimetric inequality. Bull Amer Math Soc, 1978, 84: 1182--1238
[37] Osserman R. Bonnesen-style isoperimetric inequality. Amer Math Monthly, 1979, 86: 1--29
[38] Pleijel A. On konvexa kurvor. Nordisk Math Tidskr, 1955, 3: 57--64
[39] Polya G, Szego G. Isoperimetric inequalities in mathematical physics. Ann of Math Studies. Princeton: Princeton Univ, 1951: 27
[40] Ren D. Topics in Integral Geometry. Singapore: World Scientific, 1994
[41] Sangwine, Yager J R. Mixe Volumes, Handbook of Covex Geometry. North-Holland: Wills, 1993: 43--71
[42] Santalò L A. Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley, 1976
[43] Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge Univ Press, 1993
[44] Stone A. On the isoperimetric inequality on a minimal surface. Calc Var Partial Diff Equations, 2003, 17(4): 369--391
[45] Tang D. Discrete Wirtinger and isoperimetric type inequalities. Bull Austral Math Soc, 1991, 43: 467--474
[46] Teufel E. A generalization of the isoperimetric inequality in the hyperbolic plane. Arch Math, 1991, 57(5): 508--513
[47] Teufel E. Isoperimetric inequalities for closed curves in spaces of constant curvature. Results Math, 1992, 22: 622--630
[48] Wei S, Zhu M. Sharp isoperimetric inequalities and sphere theorems. Pacific J Math, 2005, 220(1): 183--195
[49] Weiner J L. A generalization of the isoperimetric inequality on the 2-sphere. Indiana Univ Math Jour, 1974, 24: 243--248
[50] Weiner J L. Isoperimetric inequalities for immersed closed spherical curves. Proc Amer Math Soc, 1994, 120(2): 501--506
[51] Yau S T. Isoperimetric constants and the first eigenvalue of a compact manifold. Ann Sci Ec Norm Super, 1975, 8(4): 487--507
[52] Zhang G. The affine Sobolev inequality. J Diff Geom, 1999, 53: 183--202
[53] Zhang G. Geometric inequalities and inclusion measures of convex bodies. Mathematika, 1994, 41: 95--116
[54] Zhang G, Zhou J. Containment Measures in Integral Geometry. Integral Geometry and Convexity. Singapore: World Scientific, 2006: 153--168
[55] Zhang G. Convex Geometric Analysis. preprint
[56] Zhang X M. Bonnesen-style inequalities and Pseudo-perimeters for polygons. J Geom, 1997, 60: 188--201
[57] Zhang X M. Schur-convex functions and isoperimetric inequalities. Proc Amer Math Soc, 1998, 126(2): 461--470
[58] Zhou J, Chen F. The Bonneesen-type inequality in a plane of constant cuvature. J Korean Math Soc, 2007, 44(6): 1363--1372
[59] Zhou J. A kinematic formula and analogous of Hadwiger's theorem in space. Contemporary Math, 1992, 140: 159--167
[60] Zhou J. The sufficient condition for a convex domain to contain another in R4. Proc Amer Math Soc, 1994, 121: 907--913
[61] Zhou J. Kinematic formulas for mean curvature powers of hypersurfaces and Hadwiger's theorem in R2n. Trans Amer Math Soc, 1994, 345: 243--262
[62] Zhou J. When can one domain enclose another in R3? J Austral Math Soc (Series A), 1995, 59: 266--272
[63] Zhou J. Sufficient conditions for one domain to contain another in a space of constant curvature. Proc Amer Math Soc, 1998, 126: 2797--2803
[64] Zhou J. On Willmore Inequality for Submanifolds. Canadian Math Bul, 2007, 50(3): 474--480
[65] Zhou J. On the Willmore deficit of convex surfaces. Lectures in Appl Math Amer Math Soc, 1994, 30: 279--287
[66] Zhou J. The Willmore functional and the containment problem in R4. Science in China (Ser A), 2007, 50(3): 325--333
[67] Zhou J. Plan Bonnesen-type inequalities. Acta Math Sinica (Chinese Series), 2007, 50(6): 397--1402
[68] Zhou J, Xia Y, Zeng C. Some New Bonnesen-style inequalities. to appear in J Korean Math Soc
[69] Zhou J, Ma L. The discrete isoperimetric deficit upper bound. preprint
[70] Zhou J, Li M, Ma L. The isoperimetric deficit upper bound for convex set in space. preprint
[71] Zhou J, Yue S, Ai W. On the isohomothetic inequalityies. preprint
[72] Zhou J, Zeng C, Xia Y. On Minkowski style isohomothetic inequalities. preprint
[73] Zhou J, Du Y, Cheng F. Some Bonnesen-style inequalities for higher dimensions. to appear in Acta Math Sinica
[74] Zhou J. Curvature inequalities for curves. Inter J Comp Math Sci Appl, 2007, 1(2-4): 145--147
[75] Zhou J, Zhou C, Ma F. Isoperimetric deficit upper limit of a planar convex set. Rendiconti del Circolo Matematico di Palermo (Serie II, Suppl), 2009, 81: 363--367 |