[1] Tingley D. Isometries of the unit spheres. Geom Dedicata, 1987, 22: 371--378
[2] Ding G. The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space. Sci China (Ser A), 2002, 45(4): 479--483
[3] Ding G. The representation theorem of onto isometric mappings between two unit spheres of l1(Γ) type spaces and the application to the isometric extension problem. Acta Math Sin (Engl Ser), 2004, 20(6): 1089--1094
[4] Ding G. The isometric extension problem in the unit spheres of lp(Γ) (p>1) type spaces. Sci China (Ser A), 2002, 32(11): 991--995
[5] Ding G. The representation of onto isometric mappings between two spheres of l ∞ type spaces and the application on isometric extension problem. Sci China (Ser A), 2004, 34(2): 157--164
[6] Banach S. Theori\v{e} des Op\v{e}rations Lin\v{e}aires. Warszawa: Monografje Matematyczne, 1932
[7] An G. Isometries on unit spheres of (l βn). J Math Anal Appl, 2005, 301: 249--254
[8] Fu X H. Isometries on the space (s). Acta Math Sci (Engl Ser), 2006, 26B(3): 502--508
[9] Liu R. Isometries between the unit spheres of l β-sum of strictly convex normed spaces. Acta Math Sinica (Chin Ser), 2007, 50(1): 228--232
[10] Zhang L. On the isometric extension problem from the unit sphere S(l ∞(2)) into S(l ∞(3)). Acta Sci Nat Univ Nankai, 2006, 39(2): 110--112
[11] Wang J. On extension of isometries between unit spheres of ALp-spaces (1<p<∞). Proc Amer Math Soc, 2004, 132(10): 2899--2909
[12] Hou Z. The isometric extension of the into mapping between the unit spheres of ALp-spaces (1<p<∞). Acta Math Sinica (Chin Ser), 2007, 50(6): 1435--1440
[13] Lindenstrauss J, Tzafriri L. Classical Banach Spaces II: Function Spaces. Ergebnisse 92. Berlin, Heidelberg, New York: Spring-Verlag, 1979
[14] Yang X. On extension of isometries between unit spheres of Lp(μ) and Lp(ν, H)(1<p ≠ 2, H is a Hilbert space). J Math Anal Appl, 2006, 323: 985--992
[15] Ding G. On the extension of isometries between unit spheres of E and C(Ω). Acta Math Sin (Engl Ser), 2003, 19(4): 793--800
[16] Fang X, Wang J. On linear extension of isometries between the unit spheres. Acta Math Sinica (Chin Ser), 2005, 48(6): 1109--1112
[17] Fang X, Wang J. Extension of isometries between the unit spheres of normed space E and C(Ω). Acta Math Sin (Engl Ser), 2006, 22(6): 1819--1824
[18] Fu X. The isometric extension of the into mapping from the unit sphere S(E) to S(l ∞(Γ)). Acta Math Sin (Engl Ser), 2008, 24(9): 1475--1482
[19] Fang X, Wang J. Extension of isometries between unit spheres of normed space E and l 1(Γ). Acta Math Sinica (Chin Ser), 2008, 51(1): 24--28
[20] Ding G. The isometric extension of an into mapping from the unit sphere S [l(Γ)] to the unit sphere S(E). Acta Math Sci (Engl Ser), 009, 29B(3): 469--479
[21] Ding G. Extension of isometries on the unit sphere of AL-space. Sci China (Ser A), 2008, 38(5): 541--555
[22] Ding G. The isometric extension of the into mapping from a L∞(Γ)-type space to some Banach space. Illinois J Math, 2007, 51(2): 445--453
[23] Liu R. On extension of isometries between unit spheres of L∞(Γ)-type space and a Banach space E. J Math Anal Appl, 2007, 333: 959--970
[24] Ding G. The isometrically linear extensions of into-mappings between two unit spheres of the Asplund generated spaces. to appear
[25] Fang X. On extension of 1-Lipschitz mappings between two unit spheres of l p(Γ) type spaces (1<p<∞). J Math Research and Exposition. to appear
[26] Liu R. 1-Lipschitz mappings between unit spheres of Banach spaces. Acta Math Sinica (Chin Ser), 2007, 50(5): 1064--1070
[27] Ding G. On linearly isometric extensions for 1-Lipschitz mappings between unit spheres of ALp-spaces (p>2). Acta Math Sinica (Engl Ser), 2010
[28] Wang R. On extension of 1-Lipschitz mappings between l 1(Γ) type spaces. Acta Sci Nat Univ Nankai, 2010
[29] Tan D. Nonexpansive mappings on the unit spheres of some Banach spaces. Bull Aust Math Soc, 2009, 80: 139--146
[30] Mazur S, Ulam S. Sur less transformations isometriques $d'$espaces vectoriels normés. C R Math Acad Sci Paris, 1932, 194: 946--948
[31] Day M M. Normed Linear Spaces. Berlin, Heidelberg, New York: Springer-Verlag, 1973
[32] Li L, Ren W Y. On extension of isometries between unit spheres of L∞ and E. Quaest Math, 2008, 31: 209--218
[33] Liu R, Zhang L. On extension of isometries and approximate isometries between unit spheres. J Math Anal Appl, 2009, 352: 749--761
[34] Tan D. Extension of isometries on unit spheres of L∞. to appear in Taiwanese J Math
[35] Fang X. Extension of isometries on the unit sphere of l p(Γ) space. Sci China (Ser A), 2010
|