[1] Arthreya K B, Karlin S. Branching processes with random environment. Proceedings Amer Math Soc, 1970, 76: 865--870
[2] Arthreya K B, Karlin S. On branching processes in random environments 1: extinction probability. Ann Math Statis, 1972, 42: 1499--1520;
2: limit theorems. Ann Math Statis, 1972, 42: 1843--1858
[3] Arthreya K B, Ney P E. Branching Processes. New York: Springer-Verlag, 1972
[4] Solomon F. Random walks in a random environment. Ann Probab, 1975, 3: 1--31
[5] Kalikow S. Generalized random walks in random environments. Ann Probab, 1981, 9: 753--768
[6] Sinai Y G. The limiting behaviour of a one-dimetional random walk in a random medium. Theory Probab Appl, 1982, 27: 256--268
[7] Sznatiman A S. Slowdown estimates and central limit theorem for random walk in random environment. J Eur Math Soc, 2000, 2: 93--143
[8] Nawrotzki K. Discrete open systems of Markov chains in a random environment. I II J Inform Process, Cybernet, 1981, 17: 569--599; 1982, 18: 83--98
[9] Cogburn R. Markov chains in random environments: the case of Markovian environments. Ann Probab, 1980, 8: 908--916
[10] Cogburn R. The ergodic theory of Markov chains in random environments. Z Wahrsch Verw Gebiete, 1984, 66: 109--128
[11] Cogburn R. On the central limit theorem for Markov chains in random environments. Ann Probab, 1991, 19: 587--604
[12] Orey S. Markov chains with stochastically stationary transition probabilities. Ann Probab, 1991, 19: 907--928
[13] Berard J. The almost sure central limit theorem for one-dimensional nearestneighbour random walks in space-time random environment. J Appl Probab, 2004, 41: 83--92
[14] Rassoul-Agha F, Seppalainen T. An almost sure invariance principle for random walks in a space-time random environment. Probab Th Rel Fields, 2005, 133: 299--314
[15] Zeitouni O. Random Walks in Random Environment. Lecture Notes in Math. Berlin: Springer-Verlag, 2004, 1837: 189--312
[16] Hu D. From p-m chains to Markov chains in random environments. Chin Ann Math Ser A (Ch), 2004, 25: 65--78
[17] Hu D. The classification and period of states for Markov chains in random environments. Acta Math Sci, 2005, 25B: 23--29
[18] Hu D. The decomposition of state space for Markov chains in random environments. Acta Math Sci, 2005, 25B: 555--568
[19] Hu D, Xiao Z. The invariance principle for $p-\theta$ chain. Acta Math Sinica (English Serise), 2007, 23: 41--56
[20] Hu D. The existence and moments of cononical branching chain in random environment. Acta Math Sci, 2004, 24B: 499--506
[21] Hu D. The construction of multitype cononical Markov branching chains in random environments. Acta Math Sci, 2006, 26B: 431--443
[22] Hu D. Infinitely dimensional control Markov branching chains in random environments. Sci in China (Ser A), 2006, 49: 27--53
[23] Hu D. The existence and uniqueness of $q$-processes in random environments. Sci in China (Ser A), 2004, 47: 641--658
[24] Hu D. The construction of Markov processes in random environments and the equivalence theorems. Sci in China (Ser A), 2004, 47: 481--496
[25] Hu D, Zhang S. The Laplace functionals and moments for Markov branching chains in random environments. Wuhan Uni J, 2005, 10: 485--492
[26] 胡迪鹤.随机过程论---基础、理论、应用(第二版).武汉:武汉大学出版社(学术丛书), 2005
[27] Hu D, Hu X. On Markov chains in space-time random environments. Acta Math Sci, 2009, 29B: 1--10
[28] Hu D, Hu X. The construction of denumerable q-processes in random environments-the existence and uniqueness. Acta Math Sci, 2008, 28B: 225-235
[29] Hu D, Hu X. The construction of denumerable q-processes in random environments satisfying (F) or (B). Acta Math Sci, 2008, 28B: 975--988
[30] Hu D, Hu X. The branching chain with drift in space-time random environment (1)-model markov propery, moments. to appear in Acta Math Sci
[31] 肖争艳, 胡迪鹤. 随机环境中多维分枝链的增长率及灭绝概率.数学进展, 2006, 35: 685--698
[32] Li Y. Recurrence and invariant measure of Markov chains in double infinite random environments. Sci in China (Ser A), 2001, 44: 1294--1299
[33] Li Y. Instability and extinction of single birth chains in random environments. Acta Math Sin, 2002, 45: 371--378
[34] Li Y. Transience and invariant functions for Markov chains in doubly infinity random environments. Chinese Ann Math, 2003, 24: 515--520
[35] Li Y. Some notes of Markov chains in Markov environments. Adv Math (China), 1999, 28: 458--460
[36] Economou A. Generalized product-form stationary distributions for Markov chains in random environments with queueing applications. Adv in Appl Probab, 2005, 37: 185--211
[37] Guo M. Strong laws of large numbers of Markov chains in random environments. Chinese J Appl Probab Statist (Chinese), 2004, 20: 154--160
注:限于篇幅,略去参考文献近200篇,有兴趣的读者请参看作者近期要出版的专著---随机环境中的马尔可夫过程,其后面的参考文献有300多篇. |