数学物理学报 ›› 2010, Vol. 30 ›› Issue (4): 1144-1157.

• 论文 • 上一篇    下一篇

无限簇非扩张非自映象公共不动点的黏性逼近法

赵良才1, 张石生1, 2
  

  1. 1.宜宾学院数学系 重庆宜宾 644000|2.四川大学数学系 成都 610064
  • 收稿日期:2008-10-21 修回日期:2009-09-30 出版日期:2010-07-25 发布日期:2010-07-25
  • 基金资助:

    国家自然科学基金(10701059)%、浙江省自然科学基金(101016)和浙江省哲学社会科学规划常规性课题(06CGYJ21YBQ)资助

Viscosity Approximation Methods for Common Fixed Points of Infinite Nonexpansive Nonself-mappings

 ZHAO Liang-Cai1, ZHANG Shi-Sheng1, 2   

  1. 1.Department of Mathematics, Yibin University, Chongqing Yibin |644000;
    2.Department of Mathematics, Sichuan University, Chengdu |610064
  • Received:2008-10-21 Revised:2009-09-30 Online:2010-07-25 Published:2010-07-25
  • Supported by:

    国家自然科学基金(10701059)%、浙江省自然科学基金(101016)和浙江省哲学社会科学规划常规性课题(06CGYJ21YBQ)资助

摘要:

E是具有一致Gâteaux可微范数的严格凸的自反的Banach空间, KE的非空闭凸子集而且是$E$的sunny非扩张收缩核.设f: K→ K是一压缩映象, P: E→ K是一sunny非扩张保核收缩, {Tn}n=1: K E是一可数无限簇非扩张非自映象且F:=∩n=1F(Tn)≠Φ, {λn}是[0,1]中的非负数列. 考虑下列迭代序列
           { xn+1=(1-αn-βn)xn+αn f(yn)+βnWnyn,
             yn=(1-γn-δn)xn+γnWnxn+δnun, n ≥1.

其中Wn是由P, Tn, Tn-1, …, T1λnλn-1, …, λ1, ∨n≥ 1生成的W -映象.该文在较弱条件下用黏性逼近方法证明了迭代序列{xn}强收敛于pFp是下列变分不等式
           <(I-f)p, j(p-x*)>≤ 0, ∨x* ∈ F
 的唯一解.

关键词: 非扩张非自映象, 一致Gâteaux可微范数, 黏性逼近, 公共不动点

Abstract:

Let E be a real strictly convex and reflexive Banach space with a uniformly Gâteaux differentiable norm and  K be a nonempty closed convex subset of E which is also a sunny nonexpansive retract of E. Let f : KK be a contractive mapping, P be a sunny nonexpansive retraction of $E$ onto K and {Tn}n=1: KE be a family of countable infinite nonexpansive nonself-mappings such that the common fixed point set F:=:=∩n=1F(Tn)≠Φ and {λn} be a seqence of nonnegative numbers in [0,1]. Consider the following
iterative sequence
              { xn+1=(1-αn-βn)xn+αn f(yn)+βnWnyn,
                 yn=(1-γn-δn)xn+γnWnxn+δnun, n ≥1.

where Wn is the W-mapping generated by P, Tn, Tn-1,  …, T1 and λnλn-1, …, λ1 for n ≥ 1. It is shown that under very mild conditions on the parameters, the sequence {xn} converges strongly to ∈ F, where p is the unique solution in F to the following variational inequality 
                <(I-f)p, j(p-x*)>≤ 0, ∨x* ∈ F.

Key words: Nonexpansive nonself-mapping, Uniformly Gâteaux differentiable norm,  Viscosity approximation, Common fixed point

中图分类号: 

  • 47H10