[1] Ambarzumyan V A. Über eine frage der eigenwerttheorie. Z Phys, 1929, 53: 690--695
[2] Bailey P B, Everitt W N, Zettl A. Regular and singular Sturm-Liouville problems with coupled boundary conditions. Proc Roy Soc Edinb, 1996, 126A: 505--514
[3] Borg G. Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, bestimmung der differentialgleichung durch die eigenwerte. Acta Math, 1946, 78: 1--96
[4] Borg G. Uniqueness Theorems in the Spectral Theory of y''+(λ-q(x))y=0. Proc 11th Scandinavian Congress of
Mathematicians. Oslo: Johan Grundt Tanums Forlag, 1952: 276--287
[5] Chern H H, Law C K, Wang H J. Extension of Ambarzumyan's theorem to general boundary conditions. J Math
Anal Appl, 2005, 309: 764--768 (corrigendum)
[6] Fulton C, Pruess S. Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems. J Math Anal Appl, 1994, 188: 297--340
[7] Hochstadt H. Asymptotic estimates of the Sturm-Liouville spectrum. Comm Pure Appl Math, 1961, 4: 749--764
[8] Kong Q, Wu H, Zettl A. Geometric aspects of Sturm-Liouville problems I: Structure on spaces of boundary
conditions. Proc Roy Soc Edinb, 2000, 130A: 561--589
[9] Kong Q, Wu H, Zettl A. Multiplicity of Sturm-Liouville eigenvalues. J Comput Appl Math, 2004, 171: 291--309
[10] Law C K, Tsay J. On the well-posedness of the inverse nodal problem. Inverse Problems, 2001, 17: 1493--1512
[11] Makin A S. An inverse problem for the Sturm-Liouville operator with regular boundary conditions. Dokl Math, 2006, 73: 372--375
[12] Marchenko V A. Sturm-Liouville Operators and Applications (Operator Theory: Advances and Applications, 22). Basel: Birkh\"{a}user, 1986
[13] Naimark M A. Linear Differential Operators, I and II. New York: Frederick Ungar Publishing Co, 1967 and 1968
[14] Plaksina O A. Inverse problems of spectral analysis for Sturm-Liouville operators with nonseparated boundary conditions (Translated by J J Tolosa). Math USSR Sbornik, 1988, 59: 1--23
[15] Yang C F, Huang Z Y. Inverse spectral problems for 2m-dimensional canonical Dirac operators. Inverse Problems, 2007, 23: 2565--2574
[16] Yang C F, Huang Z Y, Yang X P. Ambarzumyan-type theorems for the Sturm-Liouville equation on a graph. Rocky Mountain J Math, 2009, 39: 1353--1372 |