[1] Britton N F. Reaction-diffusion Equations and Their Applications to Biology. New York: Academic, 1986
[2] Capasso V, Maddalena L. Convergence to equalibrium states for a reaction-diffusion system modeling the spatial spead of a class of bactetial and viral diseases. J Math Bio, 1981, 13: 173--184
[3] Chen X. Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations.
Adv Diff Eqns, 1997, 2: 125--160
[4] Dancer E N, Hess P. Stability of fixed points for order-preserving discrete-time dynamical systems. J Reine Angew Math, 1991, 419: 125--139
[5] Martin R H, Smith H L. Abstract functional differential equations and reaction-diffusion system. Trans Amer Math Soc, 1990, 321: 1--44
[6] Martin R H, Smith H L. Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and
convergence. J Reine Angew Math, 1991, 41: 31--35
[7] Roquejoffre J M, Terman D, Volpert V A. Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems. SIAM J Math Anal, 1996, 27: 1261--1269
[8] Schaaf K W. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations.
Trans Amer Math Soc, 1987, 302: 587--615
[9] Smith H L. Monotone Dynamical System, an Introduction to the Theory of Competetive and Cooperative Systems. Mathematical Sueveys and Monographs 41. Providence, RI: American Mathematical Society, 1995
[10] Smith H L, Zhao X Q. Global asymptotical stability of traveling waves in delayed reaction-diffusion equations. SIAM J Math Anal, 2000, 31: 514--534
[11] Volpert A I. Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs, Vol 140. Providence, RI: Amer Math Soc, 1994
[12] Wang Z C, Li W T, Ruan S. Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay. J Differential Equations, 2007, 238: 153--200
[13] Wu S L, Li W T. Global asymptotic stability of bistable traveling wave fronts in reaction-diffusion systems and their applications to population models. Chaos, Solitons & Fractals, 2009, 40: 1229--1239
[14] 吴事良, 李万同. 具有阶段结构的Lotka-Volterra合作系统的稳定性和行波解. 数学物理学报, 2008, 28(3): 454--464
[15] Xu D, Zhao X Q. Erratum to ``bistable waves in an epidemic model''. J Dynam Diff Eqns, 2005, 17: 219--247
[16] Zhao X Q. Dynamical Systems in Population Biology. New York: Springer-Verlag, 2003 |