[1] 肖燕妮, 陈兰荪. 具有阶段结构的竞争系统中自食的稳定性作用. 数学物理学报, 2002, 22A(2): 210--216
[2] 徐瑞, 郝飞龙, 陈兰荪. 一个具时滞和阶段结构的捕食-被捕食模型. 数学物理学报, 2006, 26A(3): 387--395
[3] 高淑京, 陈兰荪. 具有三个成长阶段的单种群时滞模型的永久持生存和全局稳定性. 数学物理学报, 2006, 26A(4): 527--533
[4] 陈凤德, 陈晓星, 张惠英. 捕食者具有阶段结构Holling II类功能性反应的捕食模型正周期解的存在性以及全局吸引性.
数学物理学报, 2006, 26A(1): 93--103
[5] Song Xinyu, Chen Lansun. A predator-prey system with stage-structured and harvesting for predator. Ann of Diff Eqs, 2002, 18(3): 264--277
[6] Xu Rui, Chaplain M A J, Davidson F A. Persistence and periodicity of a delayed ratio-dependent predator-prey model with stage structure and prey dispersal. Applied Mathematics and Computation, 2004, 159: 823--846
[7] 肖永峰, 房辉. 具有收获率和基于比率的两种群时滞捕食者-食饵系统的多重正周期解. 科学技术与工程, 2005, 23(5): 1781--1784
[8] Xia Yonghui, Cao Jinde, Lin Muren. Discrete-time analogues of predator-prey models with monotonic or
nonmonotonic functional response. Nonlinear Analysis: Real World Applications, 2007, 8: 1079--1095
[9] Xia Yonghui, Cao Jinde, Cheng Suisen. Multiple periodic solutions for a delayed stage-structure predator-prey model with non-monotone functional response. Applied Mathematical Modelling, 2007, 31: 1947--1959
[10] Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equation. Berlin: Springer-Verlag, 1997
|