数学物理学报 ›› 2009, Vol. 29 ›› Issue (6): 1623-1633.

• 论文 • 上一篇    下一篇

p -级数域重排特征系统的(Cα)}和

  

  1. 武汉科技大学 理学院 武汉 430065
  • 收稿日期:2008-06-05 修回日期:2009-10-23 出版日期:2009-12-25 发布日期:2009-12-25
  • 基金资助:

    湖北省教育厅项目(B20081102)资助

(Cα)-summability of Character System of p}-series Field in Kaczmarz Rearrangement

  1. College of Science, Wuhan University of Science and Technology, |Wuhan 430065
  • Received:2008-06-05 Revised:2009-10-23 Online:2009-12-25 Published:2009-12-25
  • Supported by:

    湖北省教育厅项目(B20081102)资助

摘要:

Gpp级数域.在文献[9]中, G.Gát 和 K.Nagy 已经证明p级数域的重排特征系统的(C,1)极大算子是强 (q, q)型(1 < q ≤ ∞)和弱(1,1)型. 该文把上述结果扩展到 (Cα) (0 < α ≤ 1)极大算子, 由内插定理和对偶理论,此定理扩展到Hardy-Lorentz空间仍成立,进而序列σαn f 几乎处处收敛于f.

关键词: p级数域, Kaczmarz 重排法则, Hardy-Lorentz 空间

Abstract:

Let Gp be the p-series field. G.Gát and K.Nagy[8] have shown that the maximal operator of the (C,1) means of the character system of the p-series filed in the Kaczmarz rearrangement is of type (q,q) for all 1<q ≤ ∞ and of weak type (1,1). In the present work the authors  extend these results to the (C, α) means where 0 < α ≤ 1 and prove
its maximal operator σ~α: Hp → Lp is bounded for all 1/(α+1) < p ≤ 1. By means of interpolation and duality argument, this theorem can be extended to Hardy-Lorentz spaces. As a consequence, the $(C,\alpha)$ means of an integrable function f converge to f a.e..

Key words: p-series field, Kaczmarz rearrangement, Hardy-Lorentz space

中图分类号: 

  • 42C10