数学物理学报 ›› 2009, Vol. 29 ›› Issue (3): 773-783.

• 论文 • 上一篇    下一篇

矩形域上分形插值研究

  

  1. (苏州科技学院土木工程系 |江苏 苏州 215011)
  • 收稿日期:2007-09-10 修回日期:2008-12-11 出版日期:2009-06-25 发布日期:2009-06-25
  • 基金资助:

    国家自然科学基金(40772198)资助

The Study of Fractal Interpolation on Rectangular Area

  1. (Department of Civil Engineering, University of Science and Technology of Suzhou, Jiangsu Suzhou 215011)
  • Received:2007-09-10 Revised:2008-12-11 Online:2009-06-25 Published:2009-06-25
  • Supported by:

    国家自然科学基金(40772198)资助

摘要:

该文给出了矩形域上分形插值数学模型, 分形插值曲面的计算公式, 证明了分形插值曲面迭代函数系唯一性定理, 导出了分形插值曲面的维数定理,并应用实际数据进行了分形插值曲面的实例研究. 为工程中长期寻求的粗糙表面模拟提供了理论基础和实用方法.

关键词: 分形几何, 分形插值, 曲面, 分形维数

Abstract:

In this paper, the principle of   fractal  interpolation on rectangular area is introduced, interpolation functions for the fractal interpolation surface are discussed, the theorem of uniqueness of iterated function system of fractal interpolation surface is proved, the theorem of fractal  dimension of fractal interpolation surface is derived, and the case that practical data are used to interpolate fractal surface is studied.

Key words: Fractal geometry, Fractal interpolation, Fractal , surface, Fractal dimension

中图分类号: 

  • 28A80