[1] Dahmen W, Micchelli C A. Biorthogonal wavelet expansions. Constr Approx, 1997, 13: 293--328
[2] Herrmann O. On the approximation problem in nonrecursive digital filter design. IEEE Transactions on Circuit Theory, 1971, 18(3): 411--413
[3] Jia R Q. Approximation properties of multivariate wavelets. Math Comp, 1998, 67: 647--665
[4] Jia R Q, Micchelli C A. Using the refinement equation for the construction of prewavelets V: extensibility of
trigonometric polynomials. Computing, 1992, 48: 61--72
[5] Kovacevic J, Vetterli M. Nonseparable multidimensional perfect reconstruction filter banks and wavelet
bases for $R^n$. IEEE Tran on Information Theory, 1992, 38: 533--555
[6] Chen Qiuhui, Micchelli Charles A, Peng Silong, Xu Yuesheng. Multivariate filter banks having a matrix
factorization. SIAM J Matrix Anal Appl, 2003, 25: 517--531
[7] Chen Qiuhui, Micchelli Charles A, Xu Yuesheng. On the matrix completion problem for multivariate filter bank
construction. Advances in Computational Mathematics, 2007, 26: 173--204
[8] Micchelli C A. Using the refinement equation for the construction of pre-wavelets. Numerical Algorithms, 1991, 1: 75--116
[9] Micchelli C A. Using the Refinement Equation for the Construction of Pre-wavelets VI: Shift Invariant Subspaces. Approximation Theory, Spline Functions and Applications, Singh S P, ed. Dordrecht: Kluwer Academic Publishers, 1992: 213--222
[10] Micchelli C A, Xu Y. Reconstruction and decomposition algorithms for biorthogonal multiwavelets.
Multidimensional Systems and Signal Processing, 1997, 8: 31--69
[11] Nguyen T Q, Vaidyanathan P P. Two-channel perfect reconstruction FIR QMF structures which yield linear phase FIR analysis and synthesis filters. IEEE Trans Acoustics, Speech and Signal Proc, 1989, 37(5): 676--690
[12] Vaidyanathan P P. Multivariate Systems and Filter Banks. New Jersey: Prentice Hall, Englewood Cliffs, 1993
[13] Vaidyanathan P P. Quadrature mirror filter banks, M-band extensions and perfect reconstruction techniques. IEEE ASSP Mag, 1987, 4(3): 4--20
[14] Vetterli M. Filter banks allowing perfect reconstruction. Signal Proc, 1986, 10(3): 219--244
[15] Cavaretta A S, Dahmen W, Micchelli C A. Stationary subdivision. Mem Amer Math Soc, 1991, 93(453): 1--186
[16] Chen Hanlin, Sheng Qiuhui, Xiao Shaoliang. Accuracy conditions of multivariate refinable vector in
frequency domain. Computer Math Appl, 2001, 41: 461--481
[17] Cohen A, Daubechies I. Non-separable bidimensional wavelet bases. Rev Mat Iberoamericana, 1993, 9: 51--137
[18] Croisier A, Esteban D, Galand C. Perfect channel splitting by use of interpolation/decimation/tree decomposition techniques. Int Conf on Info Sciences and Systems, 1976: 443--446
[19] Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
[20] Heil C, Colella D. Matrix refinement equation: existence and uniqueness. J Fourier Anal Appl, 1996, 2: 363--377
[21] Nathan J. Basic Algebra. New York: W. H. Freeman and Company, 1984
[22] Jia R Q. Refinable Shift-invariant Spaces: From Splines to Wavelets. In Approximation Theory VIII.
Singapore: World Scientific, 1995: 179--208
[23] Jia R Q, Riemenschneider S D, Zhou D X. Smoothness of multiple refinable functions and multiple wavelets. SIAM J Matrix Anal Appl, 1999, 21: 1--28
[24] Kovacevic J, Vetterli M. Nonseparable two and three-dimensional wavelets. IEEE Trans Signal Processing, 1995, 43: 1269--1273
[25] Micchelli C A, Sauer T. Regularity of multiwavelets. Adv Comput Math, 1997, 7: 455--545.
[26] Micchelli C A, Xu Y. Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl Comput Harmonic Anal, 1994, 1: 391--401
[27] Pollen D. SUI(2, F
[z,1/ z]) for F a subfield of C. J Amer Math Soc, 1990, 3: 611--624
[28] Sun Q, Bi N, Huang D. An Introduction to Multiband Wavelets. Hangzhou: Zhejiang University Press, 2001
[29] Smith M J, Barnwell T P. A Procedure for Designing Exact Reconstruction Filter Banks for Tree Structured Sub-band Coders. Proc IEEE Int Conf Acoust, Speech and Signal Proc. San Diego: Academic Press, 1984
|