数学物理学报 ›› 2009, Vol. 29 ›› Issue (2): 436-448.

• 论文 • 上一篇    下一篇

一类四阶超线性奇异微分方程边值问题的正解

赵增勤,李秀珍   

  1. (曲阜师范大学数学科学学院 |山东 曲阜 273165)|(山东建筑大学理学院 |济南 250014)
  • 收稿日期:2007-05-28 修回日期:2008-11-28 出版日期:2009-04-25 发布日期:2009-04-25
  • 基金资助:

    国家自然科学基金(10871116)和山东省自然科学基金(Y2006A04) 资助

Positive Solutions for a Class of Fourth Order Singular Superlinear Boundary Value Problems

 DIAO Ceng-Qi, LI Xiu-Zhen   

  1. (School of Mathematical Sciences, Qufu Normal University, Shandong Qufu 273165)|(School of Sciences, Shandong Jianzhu University, |Jinan 250014)
  • Received:2007-05-28 Revised:2008-11-28 Online:2009-04-25 Published:2009-04-25
  • Supported by:

    国家自然科学基金(10871116)和山东省自然科学基金(Y2006A04) 资助

摘要:

该文研究了一类包含二阶导数项的四阶超线性奇异微分方程边值问题, 得到正解的存在性及有关性质. 然后, 对于不含有二阶导数项的情况, 得到其C2[0,1]正解、C3[0,1]正解存在的充分必要条件.

关键词: 四阶微分方程, 奇异边值问题, 超线性, 不动点, 正解

Abstract:

This paper investigates a kind of fourth order superlinear singular boundary value problem, which contains a second derivative item. The authors obtain the  existence   and some properties of the solutions. Lastly, a necessary and sufficient condition for the existence of C2[0,1] positive solutions as well as C3[0,1] positive solutions is given for the problems which do not contain derivative items.

Key words: Fourth order differential equation, Singular boundary value problem,  Superlinearity, Fixed point, Positive solution

中图分类号: 

  • 34B15