[1] Faraco D, Koskela P, Zhong X. Mappings of finite distortion: the degree of regularity. Adv in Math, 2005, 190: 300--318
[2] Reshetnyak Yu G. Space mappings with bounded distortion. Trans Math Monographs. Amer Math Soc, 1989,
[3] Rickman S. Quasiregular Mappings. Berlin: Springer-Verlag, 1993
[4] Iwaniec T, Martin G. Geometric Function Theory and Nonlinear Analysis. Oxford: Clerendon Press, 2001
[5] Gehring F W. The $L^{p}$-intergrability of the partial derivatives of a Quasiconformal mapping. Acta Math, 1973, 130: 265--277
[6] Bojarski B. Homeomorphic solutions of Beltrami systems. Dokl Akad Nauk SSSR, 1955, 102: 661--664
[7] Elcrat A, Meyers N. Some results on regularity for solutions of nonlinear elliptic systems and quasiregular functions. Duke Math J, 1975, 42: 121--136
[8] Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton Univ Press, 1983
[9] Iwaniec T, Martin G. Quasiregular mappings in even dimensions. Acta Math, 1993, 170: 29--81
[10] Iwaniec T. p-harmonic tensors and quasiregular mappings. Ann Math, 1992, 136: 651--685
[11] Astala K, Iwaniec T, Koskela P, Martin G. Mappings of BMO-bounded distortion. Math Ann, 2000, 317(4): 703--726
[12] Hencl S, Maly J. Mappings of finite distortion: Hausdorff measure of zero sets. Math Ann, 2002, 324: 451--464
[13] Herron D A, Koskela P. Mappings of finite distortion: gauge dimension of generalized quasicircles. Illinois J Math, 2003, 47: 1243--1259
[14] Iwaniec T, Koskela P, Martin G. Mappings of BMO-distortion and Beltrami type operators. J Anal Math, 2002, 88: 337--381
[15] Iwaniec T, Koskela P, Martin G, Sbordone C. Mappings of exponentially integrable distortion: Lnlogα L-integrability. J London Math Soc, 2003, 67(1): 123--136
[16] Iwaniec T, Koskela P, Onninen J. Mappings of finite distortion: monotonicity and continuity. Invent Math, 2001, 144(3): 507--531
[17] Kauhanen J, Koskela P, Mal\'y J. Mappings of finite distortion: discreteness and openness. Arch Rational Mech Anal, 2001, 160: 135--151
[18] Kauhanen J, Koskela P, Mal\'y J. Mappings of finite distortion: condition N. Michigan Math J, 2001, 49: 169--181
[19] Kauhanen J, Koskela P, Mal\'{y} J, Onninen J, Zhong X. Mappings of finite distortion: sharp Orlicz-conditions. Rev Mat Iberoamericana, 2003, 49: 857--872
[20] Koskela P, Mal\'{y} J. Mappings of finite distortion: the zero set of the Jacobian. J Eur Math Soc, 2003, 5: 95--105
[21] Koskela P, Rajala K. Mappings of finite distortion: removable singularities. Israel J Math, 2003, 136: 269--283
[22] Gol'dstein V, Vodop'yanov S. Quasiconformal mappings and spaces of functions with generalized first derivatives. Sibirsk Mat Z, 1976, 17: 515--131
[23] Iwaniec T, \v{S}ver\'{a}k V. On mappings with integrable dilatation. Proc Amer Math Soc, 1993, 118: 181--188
[24] Manfredi J, Villamor E. Mappings with integrable dilatation in higher dimensions. Bull Amer Math Soc, 1995, 32(2): 235--240
[25] M\"uller S, Spector S. An existence theory for nonlinear elasticity that allows for cavitation. Arch Rational Mech Anal, 1995, 131(1): 1--66
[26] Gao H Y. Regularity for weakly (K1, K2)-quasiregular mappings. Sci in China, Ser A, 2003, 46(4): 499--505
[27] Iwaniec T, Sbordone C. On the integrability of the Jacobian under minimal hypothesis. Arch Rat Mech Anal, 1992, 119: 129--143
[28] Hedberg L I. On certain convolution inequalities. Proc Amer Math Soc, 1972, 36: 505--510
[29] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton Univ Press, 1970
[30] Faraco D, Zhong X. A short proof of the self-improving regularity of quasiregular mappings. Proc Amer Math Soc, 2006, 134(1): 187--192
|