数学物理学报

• 论文 • 上一篇    下一篇

双调和方程特征值问题

1, 2刘祥清; 1黄毅生; 3邓志颖   

  1. (1. 苏州大学数学科学学院 江苏苏州 215006; 2. 云南师范大学数学学院 云南昆明 650092; 3. 重庆邮电大学数理学院 四川重庆 400065)
  • 收稿日期:2006-12-01 修回日期:2008-09-07 出版日期:2009-02-25 发布日期:2009-02-25
  • 通讯作者: 刘祥清
  • 基金资助:
    云南省教育厅科研基金(08Y0144)、国家自然科学基金(10571174)和江苏省高校自然科学基金(08KJB110009)资助

The Eigenvalue Problems of Biharmonic Equations

1, 2Liu Xiangqing; 1Huang Yisheng; 3Deng Zhiying   

  1. (1. School of Mathematical Sciences, Suzhou University, Jiangsu Suzhou 215006; 2. School of Mathematical Sciences, Yunnan Normal University, Yunnan Kunming 650092; 3. School of Mathematics and Science, Chongqing University of Posts and Telecommunications, Sichuan Chongqing 400065)
  • Received:2006-12-01 Revised:2008-09-07 Online:2009-02-25 Published:2009-02-25
  • Contact: Liu Xiangqing

摘要:

该文讨论Navier边值条件下的双调和特征值问题
Δ2ua(x)u+f(x, u), x∈ Ω,
uu=0, x∈ Ω,

解的存在性, 其中Ω RN(N ≥ 5)是有界光滑区域, Δ2为双调和算子, 权函数a(x)> 0 a. e. 于Ω, 且 a(x)∈Lr(Ω) (r ≥ N/4). 应用变分方法, 得出了在f(x, u)=0的情况下方程的第二特征值, 并研究了它的结构. 同时在f(x, u) 满足一定的条件下, 得出了共振与非共振情形下方程非零解的存在性 .

关键词: 双调和算子, 特征值, 变形山路引理, 变分方法.

Abstract:

In this paper, we consider the existence of the solution for the biharmonic
eigenvalue problem under Navier boundary condition
Δ2ua(x)u+f(x, u), x∈ Ω,
uu=0, x∈ Ω,

where Ω is a bounded domain in RN(N ≥ 5), Δ2 is the biharmonic operator, and the weight function a(x) ∈Lr(Ω)(r ≥ N/4) with a(x)> 0 a.e. in Ω. By variational method, we obtain the second eigenvalue of this problem when f(x, u)=0 and study the structure of it, and discuss the existence of the nonzero solutions under resonance and nonresonance conditions.

Key words: Biharmonic operator, Eigenvalue, A variant of the Mountain-pass Lemma, Variational methods.

中图分类号: 

  • 35J65