数学物理学报 ›› 2008, Vol. 28 ›› Issue (6): 1173-1180.

• 论文 • 上一篇    下一篇

N 元指数和对数平均的凸性及几何凸性

郑宁国|张小明|褚玉明   

  1. (湖州师范学院数学系 浙江 湖州 313000)
  • 收稿日期:2006-12-09 修回日期:2008-03-15 出版日期:2008-12-25 发布日期:2008-12-25
  • 通讯作者: 褚玉明
  • 基金资助:

    国家重点基础发展计划(973计划)基金(2006CB708304)、国家自然科学基金(10771195)、浙江省自然科学基金(Y607128)和浙江省教育厅科研计划重点基金(20060306)资助

Convexity and Geometrical Convexity of the Identic and Logarithmic Means in N Variables

Zheng Ningguo;Zhang Xiaoming;Chu Yuming   

  1. (Department of Mathematics, Huzhou Teachers College, Huzhou 313000)
  • Received:2006-12-09 Revised:2008-03-15 Online:2008-12-25 Published:2008-12-25
  • Contact: Chu Yuming

摘要:

讨论了n 元指数平均和对数平均的凸性、S - 凸性、几何凸性及S - 几何凸性, 证明了:(1) n 元指数平均是S - 凹的和S - 几何凸的; (2) n 元第一对数平均是S - 凹的; (3) n 元第二对数平均是凹的和几何凸的. 最后提出了二个悬而未决的问题.

关键词: 凸函数, S - 凸函数, 几何凸函数, S - 几何凸函数

Abstract:

In this paper, we study the Schur convexity and Schur geometrical convexity
of identric and logarithmic means in n variables. We prove the following results: (1) The identric mean is Schur concave and S-geometrically convex; (2) The first-logarithmic mean is Schur concave; (3) The second-logarithmic mean is Schur convex. At last we give two open problems.

Key words: Convex functions, Schur convex functions, Geometrically convex functions,
Schur geometrically convex functions

中图分类号: 

  • 26D15