胡爱莲;张正杰
The Existence of Infinitely Many Solutions for an Elliptic
Equation Involving Critical Sobolev-Hardy Exponent
with Neumann Boundary Condition
Hu Ailian;Zhang Zhengjie
摘要: 该文研究了如下的奇异椭圆方程Neumann问题
$$
\left\{
\begin{array}{ll}
\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,
\ \ &x\in\Omega,\\
D_\gamma{u}+\alpha(x)u=0,&x\in\partial\Omega\backslash\{0\},
\end{array}\right.$$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域,
$ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ ($0\leq s\leq 2$) 是临界 Sobolev-Hardy 指标, $10$.利用变分方法和对偶喷泉定理, 证明了这个方程无穷多解的存在性.
中图分类号: