数学物理学报

• 论文 • 上一篇    下一篇

含有Sobolev-Hardy临界指标的奇异椭圆方程Neumann问题无穷多解的存在性

胡爱莲;张正杰   

  1. 喀什师范学院数理系 新疆喀什 844007
  • 收稿日期:2005-12-14 修回日期:2006-11-15 出版日期:2007-12-25 发布日期:2007-12-25
  • 通讯作者: 胡爱莲
  • 基金资助:
    新疆高校科研计划重点项目(XJEDU2004I58)资助

The Existence of Infinitely Many Solutions for an Elliptic

Equation Involving Critical Sobolev-Hardy Exponent

with Neumann Boundary Condition

Hu Ailian;Zhang Zhengjie   

  1. Department of Mathematics, Kashi Teacher's College, Kashi 844007
  • Received:2005-12-14 Revised:2006-11-15 Online:2007-12-25 Published:2007-12-25
  • Contact: Hu Ailian

摘要: 该文研究了如下的奇异椭圆方程Neumann问题

{\dispΔuμu|x|2=|u|2(s)2u|x|s+λ|u|q2u,  xΩ,Dγu+α(x)u=0,xΩ{0},
其中ΩRN 中具有 C1边界的有界区域,
0Ω, N5. 2(s)=2(Ns)N2 (0s2) 是临界 Sobolev-Hardy 指标, $10$.利用变分方法和对偶喷泉定理, 证明了这个方程无穷多解的存在性.

关键词: Neumann问题, 临界 Sobolev-Hardy 指标, (ps)c*条件, 对偶喷泉定理

Abstract: This paper deals with the Neumann problem for an elliptic
equation

{\dispΔuμu|x|2=|u|2(s)2u|x|s+λ|u|q2u,  xΩ,Dγu+α(x)u=0,xΩ{0},

where Ω is a bounded domain in RN with C1
boundary, 0Ω, N5.
2(s)=2(Ns)N2 (0s2) is the critical
Sobolev-Hardy exponent, $1 the unit outward normal to boundary Ω. By
variational method and the dual fountain theorem, the existence of
infinitely many solutions with negative energy is proved.

Key words: Neumann problem, Critical Sobolev-Hardy exponent, (ps)c*condition, Dual fountain theorem

中图分类号: 

  • 35J25