数学物理学报

• 论文 • 上一篇    下一篇

含有Sobolev-Hardy临界指标的奇异椭圆方程Neumann问题无穷多解的存在性

胡爱莲;张正杰   

  1. 喀什师范学院数理系 新疆喀什 844007
  • 收稿日期:2005-12-14 修回日期:2006-11-15 出版日期:2007-12-25 发布日期:2007-12-25
  • 通讯作者: 胡爱莲
  • 基金资助:
    新疆高校科研计划重点项目(XJEDU2004I58)资助

The Existence of Infinitely Many Solutions for an Elliptic

Equation Involving Critical Sobolev-Hardy Exponent

with Neumann Boundary Condition

Hu Ailian;Zhang Zhengjie   

  1. Department of Mathematics, Kashi Teacher's College, Kashi 844007
  • Received:2005-12-14 Revised:2006-11-15 Online:2007-12-25 Published:2007-12-25
  • Contact: Hu Ailian

摘要: 该文研究了如下的奇异椭圆方程Neumann问题
$$
\left\{
\begin{array}{ll}
\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,
\ \ &x\in\Omega,\\
D_\gamma{u}+\alpha(x)u=0,&x\in\partial\Omega\backslash\{0\},
\end{array}\right.$$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域,
$ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ ($0\leq s\leq 2$) 是临界 Sobolev-Hardy 指标, $10$.利用变分方法和对偶喷泉定理, 证明了这个方程无穷多解的存在性.

关键词: Neumann问题, 临界 Sobolev-Hardy 指标, (ps)c*条件, 对偶喷泉定理

Abstract: This paper deals with the Neumann problem for an elliptic
equation
$$
\left\{
\begin{array}{ll}
\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,
\ \ &x\in\Omega,\\
D_\gamma{u}+\alpha(x)u=0, &x\in\partial\Omega\backslash\{0\},
\end{array}
\right.
$$
where $\Omega $ is a bounded domain in $ R^N$ with $ C^1$
boundary, $ 0\in\partial\Omega$, $N\ge5$.
$2^{*}(s)=\frac{2(N-s)}{N-2}$ ($0\leq s\leq 2$) is the critical
Sobolev-Hardy exponent, $1 the unit outward normal to boundary $\partial\Omega$. By
variational method and the dual fountain theorem, the existence of
infinitely many solutions with negative energy is proved.

Key words: Neumann problem, Critical Sobolev-Hardy exponent, (ps)c*condition, Dual fountain theorem

中图分类号: 

  • 35J25