[1]Daubechies I. Ten Lecture on Wavelets. CBMSNSF Regional Series in Applied Mat h 61, Philadelphia: SIAM,1992
[2]Daubechies I. Orthonormal basis of compactly supported wavelets.Comm Pure and Appl Math, 1988,41:909-996
[3]Chui C K, Lian J A.Construction of compactly supported symmetri cand antisymmetric orthonprmal wavelets with scale=3.Appl Comput Harmon Anal,1995, 21-51 [4]杨守志,程正兴。有限区间上的采样定理及H(I)空间的逼近表示。数学物理学报,2001,21A: 410-415
[5]Cabrelli C, Heil C, Molter U. Accuracy of lattice translates of several multidimensional refinable functions. J Approx Theory, 1996,95: 5-52
[6]He Wenjie, Lai Mingjun. Construction of bivariate compactly supported bio rthogonal box spline wavelets with arbitrarily high regularities. Appl Comput Harmon Anal,1999,6: 53-74
[7]Jiang Q. Orthogonal multiwavelets with optimun timefrequency resolution .IEEE Trans Signal Process, 1998,46: 830-845
[8]Chui C K, Lian J.A study on orthonormal multiwavelets. J Appl Numer Math, 1996,20: 273-298
[9]Lian J. Orthogonal criteria for multiscaling functions. Appl Comp Harm Anal, 1998,5: 277-311
[10]彭立中,王永革. 3带正交小波系统的参数化和代数结构. 中国科学, 2001, 31A:602-614
|