[1]Eells J, Lemaire L.Selected topics in harmonic maps.Expository Lectures from the CBMS Regional Conference, Tulance Univ Dec, 1980. 15-19
[2]Hajlasz P, Strzelecki P. Subelliptic p harmonic maps into spheres a nd the ghost of Hardy spaces. Math Ann, 1998,312:341-362
[3]Hélein F. Regularité des applications faiblement harm oniques entre une surface et une sphére.C R Acad Sci Paris, 1990,311: 519-524
[4]Hélein F. Regularity of weakly harmonic maps from a surface into a manif old with symmetries. Manuscripta Math,1991,70: 203-218
[5]Hélein F. Regularité des applications faiblement harm oniques entre une surface et une variété riemannienne. C R Acad Sci Paris,1991, 312:591-596
[6]Hildebrandt S. Harmonic mappings of Riemannian manifolds.LNM,1984,1161: 1-117
[7]D Jerison, The Poincaré inequality for vector fields satisfying Horm ander's conditions. Duke Math J, 1986,53: 503-523
[8]Jost J, Xu C J. Subelliptic harmonic maps. Trans AMS, 1998,350(11): 4633-4649
[9]Sànchez A, Calle. Fundamental solutions and geometry of the sum of squares of vector fields.Inven Math,1984,78: 142-160
[10]Stricharts R S. SubRiemannian geometry. J Diff Geom,1986,24: 221-263
[11]Strzelecki P. Regularity of pharmonic maps from p dimensional ball into a sphere. Manuscripta Math,1994, 82: 407-415
[12]Toro T, Wang C. Compactness properties of weakly p harmonic maps into homogeneous spaces. Indiana Math J,1995,44:87-113
[13]Wang C. Subelliptic harmonic maps from Carnot groups.Calc Var, 2003,18: 95-115
[14]Zhou Z R. Uniqueness of subelliptic harmonic maps.Ann of Global Anal and Geom, 1999,17(6): 581-594
[15]Zhou Z R. Quantum phenomenon of the energy density of a harmonic map to a spere. Acta Mathematica Scientia, 2003,23B(1): 41-45
|