数学物理学报 ›› 2005, Vol. 25 ›› Issue (5): 637-642.

• 论文 • 上一篇    下一篇

线性算子的摄动定理

 曹小红, 郭懋正, 孟彬   

  1. 北京大学数学科学学院应用数学教研室 北京陕西师范大学数学与信息科学学院 西安
  • 出版日期:2005-10-25 发布日期:2005-10-25

Perturbation Theorems for Linear Operators

 CAO Xiao-Gong, GUO Mao-Zheng, MENG Bin   

  • Online:2005-10-25 Published:2005-10-25

摘要:

该文利用Mbekhta M于1987年引入的两个子空间来研究线性算子的摄动. 证明了如下结论:设X=K(T)+W, 其中K(T), W均闭, dim[K(T)∩N(T)]< ∞. 若TWW, TW闭, 且存在闭子空间N, 使W=[W∩N(T)]N, 则: 当S∈B(X)可逆, ST= TS, SWW, 且‖S‖充分小时, T-S为上半Fredholm算子. 在上条件下, 若dimN<∞, K(T′)闭, 则T-S为Fredholm算子, 且R(T-S)=X. 

关键词: 半Fredholm算子, 谱, Fredholm算子

Abstract:

In this paper, the authors use two subspaces which are introduced by Mbekhta M in 1987 to study the perturbation of linear operators on a Banach space X.  The main result is: suppose that X=K(T)+W, K(T) and W are all closed,dim[K(T)∩N(T)]<∞.If TWW, TW is closed, and there exists a closed subspace N in X such that W=[W∩N(T)]N, and if S∈B(X) is invertible, ST=TS, SWW, and S has sufficiently small norm, then T-S is an upper semi Fredholm operator. If in addition K(T′) is closed and dim N< ∞, then T-S is a Fredholm operator.

Key words: Semi Fredholm operator;Spectrum;Fredholm operator

中图分类号: 

  • 47A10