数学物理学报 ›› 2005, Vol. 25 ›› Issue (5): 637-642.
• 论文 • 上一篇 下一篇
曹小红, 郭懋正, 孟彬
出版日期:
发布日期:
CAO Xiao-Gong, GUO Mao-Zheng, MENG Bin
Online:
Published:
摘要:
该文利用Mbekhta M于1987年引入的两个子空间来研究线性算子的摄动. 证明了如下结论:设X=K(T)+W, 其中K(T), W均闭, dim[K(T)∩N(T)]< ∞. 若TWW, TW闭, 且存在闭子空间N, 使W=[W∩N(T)]N, 则: 当S∈B(X)可逆, ST= TS, SWW, 且‖S‖充分小时, T-S为上半Fredholm算子. 在上条件下, 若dimN<∞, K(T′)闭, 则T-S为Fredholm算子, 且R(T-S)=X.
关键词: 半Fredholm算子, 谱, Fredholm算子
Abstract:
In this paper, the authors use two subspaces which are introduced by Mbekhta M in 1987 to study the perturbation of linear operators on a Banach space X. The main result is: suppose that X=K(T)+W, K(T) and W are all closed,dim[K(T)∩N(T)]<∞.If TWW, TW is closed, and there exists a closed subspace N in X such that W=[W∩N(T)]N, and if S∈B(X) is invertible, ST=TS, SWW, and S has sufficiently small norm, then T-S is an upper semi Fredholm operator. If in addition K(T′) is closed and dim N< ∞, then T-S is a Fredholm operator.
Key words: Semi Fredholm operator;Spectrum;Fredholm operator
中图分类号:
曹小红, 郭懋正, 孟彬. 线性算子的摄动定理[J]. 数学物理学报, 2005, 25(5): 637-642.
CAO Xiao-Gong, GUO Mao-Zheng, MENG Bin. Perturbation Theorems for Linear Operators[J]. Acta mathematica scientia,Series A, 2005, 25(5): 637-642.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://121.43.60.238/sxwlxbA/CN/
http://121.43.60.238/sxwlxbA/CN/Y2005/V25/I5/637
[1]Woo Young Lee. Boundaries of the spectra in L(X). Proc Amer Math Soc,1992, 116:185-189
[2]Woo Young Lee. A generalization of the puncturded neighborhood theorem.Proc Amer Math Soc, 1993, 117: 107-109
[3]Schmoeger C. On a generalized puncturded neighborhood theorem in G(X). Proc Amer Math Soc, 1995,123: 1237-1240
[4]Mbekhta M. Généralisation de la décomposition de kato auxopérateurs paranormaux et spectraux. Glasgow Math J, 1987,29 : 159-175
[5]Mbekhta M. Sur la thoérie spectrale locale et limite des nilpotents. Proc Amer Math Soc, 1990,110: 621-631
[6]Schmoeger C. On isolated points of the spectrum of a bounded linear operator. Proc Amer Math Soc, 1993, 117: 715-719
[7]Taylor A E. Theorems on ascent, descent, nullity and defect of linear operator. Math Annalen, 1966, 163: 18-49
[8]Kato D. Perturbation Theory for Linear Operator.New York: SpringerVerlag,1966
[9]Taylor A E, Lay D C. Introduction to Functional Analysis.New York: Wiley,1980
Cited