数学物理学报 ›› 2005, Vol. 25 ›› Issue (5): 627-636.

• 论文 • 上一篇    下一篇

Ba空间中的多元加权光滑模与Bernstein Durrmeyer算子

 丁春梅, 曹飞龙   

  1. 中国计量学院理学院信息与数学科学系
  • 出版日期:2005-10-25 发布日期:2005-10-25
  • 基金资助:

    国家自然科学基金(60473034)资助

Multivariate Weighted Modulus of Smoothness and Bernstein-Durrmeyer Operators in B_a Space

 DING Chun-Mei, CAO Fei-Long   

  • Online:2005-10-25 Published:2005-10-25
  • Supported by:

    国家自然科学基金(60473034)资助

摘要:

该文引进Ba空间多元加权光滑模,推广L^p空间的DitzianTotik模, 证明该模与K泛函的等价性. 作为应用,讨论定义在单纯形上多元Bernstein-Durrmeyer算子与多元加权光滑模之间的关系. 即以多元加权光滑模为尺度, 建立Bernstein-Durrmeyer算子在Ba空间逼近阶的上界与下界估计.

关键词: B_a空间, 光滑模单纯形, Bernstein-Durrmeyer算子

Abstract:

In this paper, the authors introduce a new multivariate weighted modulus of smoothness in B_a space,which generalizes the Ditzian Totik's modulus in L^p space. The equivalence relationship between the modulus and certain K functional is shown. As an application, the relationship between the multivariate Bernstein Durrmeyer operators defined on the simplex and the modulus is discussed as well. Namely, with the modulus as a metric, the upper and lower bounds of degree of approximation by the operators are estimated in B_a space.

Key words: B_a space, Modulus of smoothness, Simplex, Bernstein Durrmeyer operators

中图分类号: 

  • 46E30