[1]Bressan A. Contractive metrics fornonlinear hyperbolic systems. Indiana University Mathematics Journal, 1988, 37(2): 409-420
[2]Li Tatsien, Zhou Yi, Kong Dexing.Global classical solutions for general quasilinear hyperbolic systems with decay initial data. Nonlinear Analysis, Theory, Methods & Application, 1997, 28(8): 1299-1332
[3]Li Tatsien, Zhou Yi, Kong Dexing. Weak Linear degeneracy and global classical solutions for generalquasilinear hyperbolic systems. Comm in PDE, 1994, 19(7&8): 1263-1317
[4]Li Tatsien, Kong Dexing. Global Classical Solutions with Small Amplitude for General Quasilniear Hyperbolic Systems. New Approaches in Nonlinear Analysis. FL USA:Hadronic Press, 1999. 203-237
[5]Kong Dexing. Breakdown of classicalsolutions for quasilinear hyperbolic systems with slow decainitial data. Chin Ann of Math, 2000, 21B(4): 413-44 [6]Yan Ping. Global existence of classical solution with small initial total variation forquasilinear linearly degenerate Hyperbolic Systems. Journal of PDE, 2003,16(4): 321-334
[7]John F. Formation of sigularities in onedimensional nonlinear wave propagation. Comm PureAppl Math, 1974,27377-405
[8]Li Tatsien, Yu Wenci. Boundary Wave Problems for Quasilinear Hyperbolic Systems Duck University Mathematics Series. NC USA: Duke University, 1985. 64-72 |