[1]Villari G. On the qualitative behaviour of solutions of Liénard equation. J Diff Equ, 1987, 67(2): 269-277
[2]Dumortier F, Rousseau C. Cubic Liénard equations with linear damping. Nonlinearity, 1990,3: 1015-1039
[3]韩茂安. 一类广义Liénard方程的有界性. 科学通报,1995,40 (21): 1925-1928
[4]黄立宏,庾建设. 广义Liénard方程非平凡周期解的存在性. 应用数学,1995,8(2): 172-176
[5]Benjamin T B, Bona J L, Mahong J J. Model equations for long waves in no nlinear dispersive systems. Philos Trans R Soc(Ser A), 1972, 272: 47-78
[6]Medeiros L A, Perla G M. Existance and uniqueness for periodic solutions of the BenjaminBonaMahony equation. SIAM J Math Anal, 1977, 8(5): 792-799
[7]张卫国,王明亮. BBBM方程的一类准确行波解及结构. 数学物理学报,1992,12(3):325-331
[8]Ablowitz M J. Lectures on the inverse scattering transform. Studies in Applied Mathematics,1978,58(11):17-94
[9]Whitham G B. Linear and Nonlinear Waves. New York: John Wiley, 1974
[10]Bogolubsky I L. Some examples of inelastic soliton interaction. Computer Physics Communications, 1977, 13(2): 149-155
[11]Clarkson P A, Le Veque R J, Saxton R. Solitarywave interactions in elastic rods. Studies in Applied Mathematics, 1986,75(1): 95-122
[12]JP4]Saxton R. Existence of solutions for a finite nonlinearly hyperelastic rod. J Math Anal Appl,1985,105(1):59-75
[13]Wadati M. Wave propagation in nonlinear lattice (Ⅰ), (Ⅱ). J Phys Soc Japan, 1975, 38(3): 673-680
[14]Dodd R K, et al. Solitons and Nonlinear Wave Equations. London: AcademicPress, 1982
[15]Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. London: Cambridge University Press, 1991
[16]Farlow S J. Partial Differential Equation for Scientists and Engineers. New York: Wiley Interscience, 1982
[17]Kamke E著,张鸿林 译. 常微分方程手册. 北京:科学出版社,1980
[18]张卫国. 几类具5次强非线性项的发展方程的显式精确孤波解. 应用数学学报,1998, 21(2): 249-256
[19]范恩贵,张鸿庆. 非线性波动方程的孤波解. 物理学报,1997,46(7): 1254-1258 |