数学物理学报 ›› 2005, Vol. 25 ›› Issue (1): 130-144.

• 论文 • 上一篇    

小波与函数空间

 杨奇祥, 程正兴, 彭立中   

  1. 武汉大学数学与统计学院 武汉 西安交通大学理学院 西安 北京大学数学科学院 北京
  • 出版日期:2005-02-25 发布日期:2005-02-25
  • 基金资助:

    国家自然科学基金(10001027、90104004)、国家973项目(1999075105)和武汉大学创新基金资助

Uniform Characterization of Function Spaces by Wavelets

 YANG Ai-Xiang, CHENG Zheng-Xin, BANG Li-Zhong   

  1. 武汉大学数学与统计学院 武汉 西安交通大学理学院 西安 北京大学数学科学院 北京
  • Online:2005-02-25 Published:2005-02-25
  • Supported by:

    国家自然科学基金(10001027、90104004)、国家973项目(1999075105)和武汉大学创新基金资助

摘要:

Triebe利用Littlewood Paley分解将大多数函数空间分类成两类三指标的函数空间:Besov空间和Triebel Lizorkin空间;但Littlewood Paley 分解很难直接分析Sobolev空间L^p的插值空间Lorentz空间,也很难分析Triebel Lizorkin空间F^{α,q}_1的预备对偶空间和对偶空间.运用小波,作者给出这些空间一个统一刻画:Triebel Lizorkin Lorentz 空间,Besov Lorentz空间和F^{α,q}_1的预备对偶空间和对偶空间;另外也研究这些空间的三个性质.

关键词: Triebel Lizorkin Lorentz空间;Besov Lorentz空间;插值空间;原子分解;预备对偶空间和对偶空间;嵌入定理

Abstract:

Using Littlewood Paley decomposition, Triebel classified most of function spaces into three index function spaces: Besov spaces and Triebel Lizorkin spaces. But such spaces  contain neither real interpolation spaces of two Sobolev spaces L^p(Lorentz spaces), nor dual space and predual space of  Triebel Lizorkin spaces F^{α,q}_1; the authors did not know how to give a uniform description for Triebel Lizorkin spaces and Lorentz spaces. Using wavelets, the authors can give all these spaces a uniform description: Triebel Lizorkin Lorentz spaces, BesovLorentz spaces and dual space and predual space of F^{α,q}_1; furthermore, the authors study also some properties for these spaces.

Key words: Triebel Lizorkin Lorentz spaces and Besov Lorentz spaces, Interpolation spaces, Atomic decomposition; , Dual and predual spaces, Embedding theorem.

中图分类号: 

  • 26B35