1]Ghidaglia J M, Héron B. Dimension of the attractor associated to the GinzburgLandau equatio
n. Phys, 1987, 28D: 282-304
[2]Doering CGibbon J D, Holm D. Lowdimensional behavior in the complex GinzburgLandau equation.
Nonlinearity, 1988, 1: 279-309
[3]Promislow K. Induced trajectories and approximate inertial manifolds for the Gi
nzburgLandau partial equation. Physica D, 1990, 41: 232-252
[4]Bartuccelli M, Constantin P, Doering C. On the possibility of soft and hard turbulence in the com
plex GinzburgLandau equation. Physica D, 1990, 44: 421-444
[5]Bu C. On the Cauchy problem for the 1+2 complex GinzburgLandau equation. J Austral Math Soc(Ser.B), 1994,36: 313-324
[6]Doerin C R, Gibbon J D, Levermore C D. Weak and strong solutions of the complex GinzburgLandau equation. Phys, 1994, 71D: 285-318
[7]Mielke A. The complex GinzburgLandau equation on large and unbounded domains: sharper bounds and attractors. Nonlinearity, 1997, 10: 199-222
[8]Henry D. Geometric Theory of Semilinear Parabolic Equation.Berlin: SpringVerlag, 1981
[9]Pazy A. Semigroups of linear Operators and Applications to Partial Differential Equation. Berlin: SpringVerlag, 1983
[10]Babin A V, Vishik. Attractors of partial differential evolution
equations in a unbounded domain. Pro Roy Soc Edinburgh(Series A), 1990, 116: 221-243
[11]Temam R. Infinite Dimensional Dynamical systems in Mechanics and Physics. New York: Springer, 1988 |