[1]许冰. 非参数回归函数核估计的强收敛速度. 高校应用数学学报, 1990,5A:533-540
[2] 胡舒合. 分布自由的回归函数近邻核估计的强相合性。 数学学报, 1995, 38: 559-567
[3] 许冰. 强混合样本回归函数估计的强相合性. 数学杂志, 1998, 18(2): 169-174
[4]张双林, 沙秋英, 程美玉. 回归函数非线性小波估计的一致强相合性. 应用概率统计, 1999, 15(4): 375-380
[5] Priestley M B, Chao M T. Nonparametric function fitting.J R Statist Soc B, 1972, 34: 385-392
[6] Benedetti J K. On the nonparametric estimation of regression functions. J R Statist Soc B, 1977, 39: 248-253
[7] Schuster E, Yukowitz S. Contributions to the theory of nonparametric regression, with application to system
identification. Ann Statist, 1979, 7(1): 139-149
[8]秦永松. 非参数回归函数估计的一个结果. 工程数学学报,1989,6(3): 120-123
[9] 秦永松. 相依误差下非参数回归函数估计的强相合性. 广西师范大学学报, 1992, 10(2): 24-27
[10]杨善朝. φ混合误差下非参数回归函数加权核估计的相合性. 高校应用数学学报, 1995, 10A(2): 173-180
[11] Athreya K B, Pantula S G. Mixing properties of harris chains and autoreggressive processes. Journal of Applied Probability,
1986,23: 880-892
[12] Gilbert G Walter. Wavelets and Other Orthogonal Systems with Application. Florida: CRC press, 1994
[13] Antoniadis A, Gregoire G, Mckeague I M. Wavelet methods for curve estimation. JASA, 1994, 89: 1340-1352
[14] 杨善朝. α混合序列和的强大数律及其应用. 高校应用数学学报, 1996, 11(4):443-449
[15] 胡舒合. φ混合、α混合序列和的强大数律. 工程数学学报, 1992, 9(3): 57-63
[16] Shao Qiman. Complete convergence for αmixing sequences. Statistics and Probability Letters, 1993,16: 279-287
[17] Liebescher E. Strong convergence of sums of αmixing random variables
with applications to density estimation. Stochastic Process and Their Application, 1996, 65: 69-80
[18]钱志坚, 柴根象. Bayes辨别的小波方法. 同济大学学报, 1999, 27(6): 699-703 |