数学物理学报 ›› 2004, Vol. 24 ›› Issue (2): 216-222.

• 论文 • 上一篇    下一篇

Banach空间中渐近非扩张映射逼近序列的强收敛性

 胡长松   

  1. 湖北师范学院数学系 黄石 435002
  • 出版日期:2004-04-27 发布日期:2004-04-27
  • 基金资助:

    湖北省教育厅重大科研项目(2001Z06003)资助

Strong Convergence of Approximated Sequences for Asymptotically Nonexpansive Mappings in Banach Spaces

 HU Chang-Song   

  • Online:2004-04-27 Published:2004-04-27
  • Supported by:

    湖北省教育厅重大科研项目(2001Z06003)资助

摘要:

该文研究了序列{x_n}的收敛性。其中x_0∈C, x_{n+1}=α_n T^n x_n+(1-α_n)x, n=0,1,2,…,这里0≤α_n≤1,T是Banach空间中非空闭凸子集C到自身的渐近非扩张映射。同时证明了:当z_n=(1-t_n/k_n)u+t_n/k_n T^n z_n且lim_{n→∞}{(k_n-1)/(1-t_n)}=0,lim‖z_n-Tz_n‖=0时,T有不动点当且仅当{z_n}有界。这时{z_n}强收敛于T的不动点。

关键词: 渐近非扩张映射;强收敛;Banach极限

Abstract:

In this paper, the author studies the convergence of the sequence defined by x_0∈C,x_{n+1}=α_n T^n x_n+(1-α_n)x, n=0,1,2,…,where 0≤α_n≤1and T is an asymptotically nonexpansive mapping from a closed convex subset of a Banach space into itself and it is proved that, if lim_{n→∞}{(k_n-1)/(1-t_n)}=0,lim‖z_n-Tz_n‖=0  holds, then T has a fixed point if and only if {z_n} remains bounded as n→∞, in this case {z_n} converges strongly to a fixed point of T

Key words: Asymptotically nonexpansive mapping, Strong convergence, Banach limits

中图分类号: 

  • 47H09