[1]Akers S B, Harel D,Krishnamurthy B. The Star Graph, an Attrative Alternative to the n Cube.Proc Internet Conf on Pararllel Processing.Berlin:SpringerVerlag, 1987. 393-400
[2]Akers S B, Krisnamurthy B. A group theoretic model for symmetric interconnection networks. IEEE Trans Comput,1989,38(4):555-566
[3]Krishnamoorthy M S,Krishnamurthy B.Fault diameter of interconnection networks. Comput Math Appl, 1987,13: 577-582
[4]Latifi S. On the faultdiameter of the star graph.Inform Process Lett,1993, 46: 143-150
[5]Esfahanian A H, Hakimi S L. On computing a condition edge. Inform Process Lett, 1988, 27:195-199
[6]Esfahanian A H. Generalized measures of fault torelance with application to N cube networks. IEEE Trans Comput, 1989, 38: 1586-1591
[7]Latifi S. Combinatorial Analysis of the Faultdiameter of the n cube. IEEE Trans Comput, 1993, 42: 27-33
[8]Li Qiao, Zhang Yi. Restricted connectivity and restricted fault diameter of some interconnection networks.DIMACS series in Discrete Mathematics and Theoretic Computer Science, 1995, 21: 267-273
[9]Bondy J A, Murty U S R. Graph Theory with Applications. N ew York: North Holland, 1979
[10]Day K, Trapathi A. A comparative study of topological properties of hypercubes and star graphs.IEEE Trans.Parallel Distributed Systems,1994,5(1): 31-38
[11]Akers S B, Krishnamurthy B.A group graphs and their fault tolerance. IEEE Trans Comput, 1987, 36(7): 885-888
[12]Akers S B, Krishnamurthy B. The fault tolerance of star graphs. Proc 2nd Intl Conf on Surpercomputing, 1987, 3: 270-276
[13]Bermond J C, ed.. Interconnection Network. Discrete Appl Math. Amsterdam:NorthHolland, 1992, 37/38(special issue)
[14]Hsu D F, Luczak T. Note on the k diameter of k connected graphs. Discrete Math, 1994, 133: 291-296
[15]Menn A,Somani A K.An Efficient Sorting Algorithmforthe Star Graph Interconnection Network.Proc Internet Conf on Parallel Processing.Berlin:Springer Verlag,1990.1-8
|