[1]Anandalingam G, Friesz T L. Hierarchical Optimization. Anals of Operations Research, 1992.34
[2]Bard J F. Optimality conditions for the bilevel programming problem. Naval Research Logistics Quarterly, 1984, 31: 13-26
[3]Clarke P, Westerberg A. A note on optimality conditions for the bilevel programming problem. Naval Research Logistics Quarterly, 1988, 35: 413-418
[4]Dempe S. A necessary and sufficient optimality condition for bilevel programming problems. Optimization, 1992, 25: 341-354
[5]Savard G, Gauvin J. The steepest descent direction for the nonlinear bilevel programming problem. Operations Research Letters, 1994, 15: 265-272
[6]Vicente L N, Calamai P H. Geometry and local optimality conditions for bilevel programs with quadratic strictly convex lower levels, minimax and applications. In: Dordrecht M H, ed. Nonconvex Optimization and Its Applications. Dordrecht, Holland:Kluwer Academic Publishers, 1995,373-386
[7]Chadli O, Chbani Z, Riahi H. Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. Journal of Optimization Theory and Applications, 2000, 105 : 299-323
[8]Ansari Q H, Lin Y C, Yao J C. General KKT theorem with applications to minimax and variational inequalities. Journal of Optimization Theory and Applications, 2000, 104: 41-57
[9]Klatte Diethard. Upper Lipschitz behavior of solutions to perturbed C^1,1 programs. Mathematical Programming, Series B, 2000, 88: 285-311
[10]Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983, 73-84
[11]Fan K. A generalization of Tychonoff's fixedpoint theorem. Mathematish e Annalen, 1961, 142: 305-310
[12]Kassay G, Kolumban J. Multivalued parametric variational inequalities with αpseudomonotone maps. Journal of Optimization Theory and Applications, 2000, 107: 35-50
[13]Berge C. Espaces Topologiques: Functions Maltivoques.Paris:Dunod, 1959.109-122
|