数学物理学报 ›› 1998, Vol. 18 ›› Issue (3): 342-347.

• 论文 • 上一篇    下一篇

Heisenberg群上Folland-Stein定理的注记

欧阳才衡1, 梁幼鸣2   

  1. 1. 中国科学院武汉物理与数学研究所 武汉 430071;
    2. 空军雷达学院 武汉 430010
  • 收稿日期:1997-12-01 出版日期:1998-09-26 发布日期:1998-09-26
  • 基金资助:
    国家自然科学基金资助

A remark on the Folland-Stein theorem for the Heisenberg group

Ouyang Caiheng1, Liang Youming2   

  1. 1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071;
    2. Airforce Radar Academy, Wuhan 430010
  • Received:1997-12-01 Online:1998-09-26 Published:1998-09-26

摘要: 该文在G.B.Folland与E.M.Stein研究的算子La=-1/2∑j=1n(ZjZj+ZjZj)+iaT(aC)的基础上.拓展考虑了算子Lλ、μ、α=λj=1nZjZj+μZjZj+iaT(λ,μ,αC),其中λ+μ≠0且λα/2n,μ≠-α/2n),证明了:如果φa,b(z,t)=(|z|2-it)a(|z|2+it)b,a=(a-2)/(2(λ+μ)),b=-(a+2)/(2(λ+μ))使得Ca,b=∫Hnψa,b,1(z,t)dV(z,t)有限(其中ψa,b,1(z,t)=-4(λ+μ)ab(|z|2+1-it)a-1(|z|2+1+it)b-1,那么在分布的意义下将有Lλ、μ、α φa,b=Ca,bδ.特别,当λ=μ=-1/2时,此结果即原来的Folland-Stein定理.

关键词: Heisenberg群, Folland-Stein定理, 基本解

Abstract: In this note, based on the operator#br#La=-1/2∑j=1n(ZjZj+ZjZj)+iaT,aC,#br#the authors extend consideration to the operator#br#Lλ、μ、α=λj=1nZjZj+μj=1nZjZj+iaT,λ,μ,αC,#br#whereλ+μ≠0且λα/2n,μ≠-α/2n).It is proved that if φa,b(z,t)=(|z|2-it)a(|z|2+it)b,a=(a-2)/(2(λ+μ)),b=-(a+2)/(2(λ+μ)) such that Ca,b=∫Hnψa,b,1(z,t)dV(z,t)is finite, here ψa,b,1(z,t)=-4(λ+μ)ab(|z|2+1-it)a-1(|z|2+1+it)b-1,then have#br#Lλ、μ、α φa,b=Ca,bδ#br#in the sense of distributions. Especially,as λ=μ=-1/2, the above result is just the Folland Stein theorem.

Key words: Heisenberg group, Folland-Stein theorem, fundamental solution