数学物理学报 ›› 1997, Vol. 17 ›› Issue (1): 31-37.

• 论文 • 上一篇    下一篇

非线性波动方程整体解存在的一个必要条件

张全德1,2   

  1. 1 陕西师范大学数学系 710062;
    2 西安交大理学院 710049
  • 收稿日期:1995-01-09 修回日期:1995-12-04 出版日期:1997-02-26 发布日期:1997-02-26
  • 基金资助:
    国家自然科学基金资助项目

A Necessary Condition on Exitence of Global Solutions of Nonlinear Wave Eguations

Zhang Quande1,2   

  1. Department of Math. Shaanxi Normal Univ. Xi'an 710062;College of Science. Xi'an Jiaotong Univ. 710049
  • Received:1995-01-09 Revised:1995-12-04 Online:1997-02-26 Published:1997-02-26

摘要: 该文给出了非线性波动方程uu=△u+f(u),(|f(u)|=|u|p,p>1)的Cauchy问题在函数空间C0k(Rn)的原点领域有古典整体解的一个必要条件:(1)/2(||u(0)||L22+||ut(0)||L22)-∫Rn0u0f(s)dsdx ≥ 0.并且证明了1 < p <(n2+n+2)/(n+(n-1)),n≠1(n=1,1 < p <+∞)古典解与广义解有相同的生命跨度。同时给出了生命跨度的上界估计。

关键词: 非线性波动方程, 初值问题, 古典解, 广义解, 生命跨度(life span)

Abstract: In this paper, a necessary condition on existence of global classical solutions is obtained for the Canchy problems of nonli-near wave eguations,uu=△u+f(u),(|f(u)|=|u|p,p>1) when initial data belong to some neighborhood of 0 in space C0k(Rn). We also prove that classical and generaliged solutions hcwe the same life span,And the estimation of upper bound of the life span is obtained.

Key words: nonlinear wave eguation, initial problem, classical solution, genepalized solution, life span