[1] |
Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm Partial Differential Equations, 1995, 20(10):1725-1741
|
[2] |
Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51(3):366-384
|
[3] |
Bergé L, Bouard A D, Saut J C. Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation. Nonlinearity, 1995, 8(2):235-253
|
[4] |
Byeon J, Huh H, Seok J. Standing waves of nonlinear Schrödinger equations with the gauge field. J Funct Anal, 2012, 263(6):1575-1608
|
[5] |
Byeon J, Huh H, Seok J. On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations. J Differential Equations, 2016, 261(2):1285-1316
|
[6] |
Chen S T, Zhang B L, Tang X H. Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in H1(R2). Nonlinear Anal, 2019, 185:68-96
|
[7] |
Chen Z, Tang X H, Zhang J. Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in R2. Adv Nonlinear Anal, 2019, 9(1):1066-1091
|
[8] |
Cunha P L, D'Avenia P, Pomponio A, et al. A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity. Nonlinear Differential Equations Appl, 2015, 22(6):1831-1850
|
[9] |
Huh H. Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field. J Math Phys, 2012, 53 (6):8pp
|
[10] |
Jackiw R, Pi S Y. Classical and quantal nonrelativistic Chern-Simons theory. Phys Rev, 1990, 42(10):3500-3513
|
[11] |
Jackiw R, Pi S Y. Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys Rev Lett, 1990, 64(25):2969-2972
|
[12] |
Jackiw R, Pi S Y. Self-dual Chern-Simons solitons. Progr Theoret Phys Suppl, 1992, 107:1-40
|
[13] |
Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28(10):1633-1659
|
[14] |
Jeanjean L. On the existence of bounded Palais-Smale sequences and application to Landesman-Lazer-type problem set on RN. Proc Roy Soc Edinburgh Sect A, 1999, 129(4):787-809
|
[15] |
Ji C, Fang F. Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth. J Math Anal Appl, 2017, 450(1):578-591
|
[16] |
Jiang Y S, Pomponio A, Ruiz D. Standing waves for a gauged nonlinear Schrödinger equation with a vortex point. Commun Contemp Math, 2016, 18 (4):Article ID 1550074 20pp
|
[17] |
Kang J C, Li Y Y, Tang C L. Sign-Changing solutions for Chern-Simons-Schrödinger equations with asymptotically 5-Linear nonlinearity. Bull Malays Math Sci Soc, 2021, 44(2):711-731
|
[18] |
Li G B, Luo X. Normalized solutions for the Chern-Simons-Schrödinger equation in R2. Ann Acad Sci Fenn Math, 2017, 42(1):405-428
|
[19] |
Li G D, Li Y Y, Tang C L. Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth. Complex Var Elliptic Equ, 2021, 66(3):476-486
|
[20] |
Liu B, Simth P, Tataru D. Local wellposedness of Chern-Simons-Schrödinger. Int Math Res Not, 2014, 2014(23):6341-6398
|
[21] |
Pankov A, Bartsch T, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4):549-569
|
[22] |
Pomponio A, Ruiz D. Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc Var Partial Differential Equations, 2015, 53(1/8):289-316
|
[23] |
Pomponio A, Ruiz D. A variational analysis of a gauged nonlinear Schrödinger equation. J Eur Math Soc, 2015, 17(6):1463-1486
|
[24] |
Seok J. Infinitely many standing waves for the nonlinear Chern-Simons-Schrödinger equations. Adv Math Phys, 2015, 2015:1-7
|
[25] |
Tang X H, Zhang J, Zhang W. Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity. Results Math, 2017, 71(3/8):643-655
|
[26] |
Wan Y Y, Tan J G. Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition. J Math Anal Appl, 2014, 415(1):422-434
|
[27] |
Wan Y Y, Tan J G. Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems. Nonlinear Differential Equations Appl, 2017, 24(3):28
|
[28] |
Wan Y Y, Tan J G. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete Contin Dyn Syst, 2017, 37(5):2765-2786
|
[29] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87(4):567-576
|
[30] |
Willem M. Minimax theorems. Boston:Birkhäuser, 1996
|
[31] |
Xia A. Existence, nonexistence and multiplicity results of a Chern-Simons-Schrödinger system. Acta Appl Math, 2020, 166:147-159
|
[32] |
Xie W, Chen C. Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations. Appl Anal, 2020, 99(5):880-898
|
[33] |
Yuan J. Multiple normalized solutions of Chern-Simons-Schrödinger system. Nonlinear Differential Equations Appl, 2015, 22(6):1801-1816
|
[34] |
Zhang N, et al. Ground state solutions for the Chern-Simons-Schrödinger equations with general nonlinearity. Complex Var Elliptic Equ, 2020, 65(8):1394-1411
|