[1] |
Cotsiolis A, Tavoularis N K. Best constants for Sobolev inequalities for higher order fractional derivatives. J Math Anal Appl, 2004, 295:225-236
|
[2] |
Lorenzo B, Sunra M, Marco S. Optimal decay of extremals for the fractional Sobolev inequality. Calc Var Partial Differ Equ, 2016, 55:Art 23, 32 pp
|
[3] |
Nezza E D, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136:521-573
|
[4] |
Gazzola F. Critical growth quasilinear elliptic problems with shifting subcritical perturbation. Differ Integral Equ, 2001, 14:513-528
|
[5] |
Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math, 1983, 36:437-477
|
[6] |
Mawhin J, Bisci G M. A Brezis-Nirenberg type result for a nonlocal fractional operator. J London Math Soc, 2017, 95:73-93
|
[7] |
Bonder J F, Saintier N, Silva A. The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem. Nolinear Differ Equ Appl, 2018, 25:25-52
|
[8] |
Sunra M, Kanishka P, Marco S, Yang Y. The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc Var Partial Differ Equ, 2016, 55:Art 105, 25 pp
|
[9] |
Sunra M, Marco S. Nonlocal problems at nearly critical growth. Nonlinear Anal, 2016, 136:84-101
|
[10] |
He Q, Peng S, Peng Y. Existence, non-degeneracy of proportional positive solutions and least energy solutions for a fractional elliptic system. Adv Differ Equ, 2017, 22:867-892
|
[11] |
Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional laplacian. Trans Amer Math Soc, 2015, 367(5):67-102
|
[12] |
Abdelhedi W, Chtioui H, Hajaiej H. The Bahri-Coron for fractional Yamabe-type problem. Adv Nonlinear Stud, 2018, 18:393-407
|
[13] |
Long W, Peng S, Yang J. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete Contin Dyn Syst, 2016, 36:917-939
|
[14] |
Ros-Oton X, Serra J. The Pohozaev identity for the fractional Laplacian. Arch Ration Mech Anal, 2014, 213:587-628
|
[15] |
Li Q, Peng S. On the fractional Lazer-McKenna conjecture with critical growth. Proc Royal Soc Edinburgh, 2021. DOI:https://doi.org/10.1017/prm.2021.40
|
[16] |
Chen M, Li Q, Peng S. Bound states for fractional Schrodinger-Poisson system with critical exponent. Discrete Contin Dyn Syst Ser S, 2021, 14:1819-1835
|
[17] |
Guo L, Li Q. Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent. J Math Phys, 2020, 61:121501, 20 pp
|
[18] |
Guo L, Li Q. Multiple high energy solutions for fractional Schrödinger equation with critical growth. Calc Var Partial Differential Equations, 2022, 61:Paper No. 15, 26 pp
|
[19] |
He Q, Peng Y. Infinitely many solutions with peaks for a fractional system in RN. Acta Mathematica Scientia, 2020, 40B(2):389-411
|
[20] |
Li G, Yang T. The existence of a nontrivial weak solution to a double critical problem involving a fractional Laplacian in RN with a Hardy term. Acta Mathematica Scientia, 2020, 40B(6):1808-1830
|