Chinese Journal of Magnetic Resonance ›› 2007, Vol. 24 ›› Issue (4): 401-419.
Previous Articles Next Articles
ZHU Xiao-qin1,2,CHEN Zhong2*
Received:
2007-08-28
Online:
2007-12-05
Published:
2007-12-05
About author:
*Corresponding author: Chen Zhong, Tel:0592-2181712, E-mail:chenz@xmu.edu.cn.
Supported by:
国家自然科学基金(20573084)和福建省自然科学基金(A0610005)资助项目.
CLC Number:
ZHU Xiao-qin1,2,CHEN Zhong2*. Intra- and Inter-molecular Multiple Quantum Coherences in Highly Polarized Spin Systems[J]. Chinese Journal of Magnetic Resonance, 2007, 24(4): 401-419.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]Ernst R R, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions[M]. Oxford: Clarendon Press, 1987.[2]Navon G, Shinar H, Eliav U, et al. Multiquantum filters and order in tissues[J]. NMR Biomed, 2001, 14(2): 112-132.[3]Wolff S D, Balaban R S. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo[J]. Magn Reson Med, 1989, 10: 135-144.[4]Grossman R, Gomori J M, Ramer K N, et al. Magnetization transfer: theory and clinical applications in neuroradiology[J]. Radiographics, 1994, 14: 279-290.[5]Henkelman R M, Stanisz G J, Graham S J. Magnetization transfer in MRI: a review\[J\]. NMR Biomed. 2001, 14: 57-64.[6]Neufeld A, Eliav U, Navon G. New MRI method with contrast based on the macromolecular characteristics of tissues[J]. Magn Reson Med, 2003, 50: 229-234.[7]Eliav U, Navon G. Multiple quantum filtered NMR studies of the interaction between collagen and water in the tendon[J]. J Am Chem Soc, 2002, 124: 3 125-3 132.[8]Vega S, Pines A. Operator formalism for double quantum NMR[J]. J Chem Phys, 1977, 66(12): 5 624-5 644.[9]Wokaun A, Ernst R R. Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscory[J]. Chem Phys Lett, 1977, 52(3): 407-412.[10]Warren W S, Weitekamp D P, Pines A. Theory of selective excitation of multiple-quantum transitions[J]. J Chem Phys, 1980, 73(5): 2 084-2 099.[11]Bodenhausen G, Kogler H, Ernst R R. Selection of coherence-transfer pathways in NMR pulse experiments[J]. J Magn Reson, 1984, 58: 370-388.[12]Barker P, Freeman R. Pulsed field gradients in NMR: An alternative to phase cycling[J]. J Magn Reson, 1985, 64: 334-338.[13]McCoy M A, Warren W S. Three-quantum nuclear magnetic resonance spectroscopy of liquid water: Intermolecular multiple-quantum coherence generated by spin-cavity coupling[J]. J Chem Phys, 1990, 93(1): 858-860.[14]Warren W S, Richter W, Andreotti A H, et al. Generation of impossible cross-peak between bulk water and biomolecules in solution NMR[J]. Science, 1993, 262: 2 005-2 009.[15]Zheng S K, Chen Z, Chen Z W, et al. Direct measurement of transverse relaxation time of intermolecular multiple quantum coherence in NMR[J]. Chinese Phys, 2001, 10(6): 558-563.[16]Chen Z, Chen Z W, Zhong J. Quantitative study of longitudinal relaxation related to intermolecular dipolar interactions in solution NMR[J]. Chem Phys Lett, 2001, 333(1-2): 126-132.[17]Chen Z, Lin G X, Zhong J. Diffusion of intermolecular zero- and double-quantum coherences in two-component spin system[J]. Chem Phys Lett, 2001, 333(1-2): 96-102.[18]Chen Z, Zhong J. Unconventional diffusion behaviors of intermolecular multiple-quantum coherences in nuclear magnetic resonance[J]. J Chem Phys, 2001, 114(13): 5 642-5 653.[19]Chen Z, Zheng S K, Zhong J. Optimal RF flip angles for intermolecular multiple-quantum coherences of different orders with the CRAZED pulse sequence[J]. Chem Phys Lett,2001, 347: 143-148.[20]Chen Z, Chen Z W, Zhong J. Quantitative characterization of intermolecular dipolar interactions of two-component systems in solution nuclear magnetic resonance[J]. J Chem Phys, 2001, 115(23): 10 769-10 779.[21]Zhong J, Chen Z, Zheng S K, et al. Theoretical and experimental characterization of NMR transverse relaxation process related to intermolecular dipolar interactions[J]. Chem Phys Lett, 2001, 350(3-4): 260-268.[22]Mattiello D L, Warren W S, Mueller L, et al. Minimizing the water resonance in biological NMR: characterization and suppression intermolecular dipolar interaction by multiple-axis gradients[J]. J Am Chem Soc, 1996, 118(13): 3 253-3 261.[23]Faber C. Solvent-localized NMR spectroscopy using the distant dipolar field: A method for NMR separations with a single gradient[J]. J Magn Reson, 2005, 176(1): 120-124.[24]Vathyam S, Lee S, Warren W S. Homogeneous NMR spectra in inhomogeneous fields[J]. Science, 1996, 272(5258): 92-96.[25]GarrettRoe S, Warren W S. Numerical studies of intermolecular multiple quantum coherences: high-resolution NMR in inhomogeneous fields and contrast enhancement in MRI[J]. J Magn Reson, 2000, 146(1): 1-13.[26]Lin Y Y, Ahn S, Murali N, et al. High-resolution, >1 GHz NMR in unstable magnetic fields\[J\]. Phys Rev Lett, 2000, 85(17): 3 732-3 735.[27]Chen Z, Chen Z W, Zhong J. Highresolution NMR spectra in inhomogeneous fields via IDEAL (Intermolecular Dipolar-Interaction Enhanced All Lines) method\[J\]. J Am Chem Soc, 2004, 126(2): 446-447.[28]Richter W, Lee S, Warren W S, et al. Imaging with intermolecular multiple-quantum coherences in solution nuclear-magnetic resonance[J]. Science, 1995, 267(5198): 654-657.[29]Warren W S, Ahn S, Mescher M, et al. MR imaging contrast enhancement based on intermolecular zero quantum coherences[J]. Science, 1998, 281(5374): 247-251.[30]Rizi R R, Ahn S, Alsop D C, et al. Intermolecular zero-quantum coherence imaging of the human brain[J]. Magn Reson Med, 2000, 43(5): 627-632.[31]Zhong J, Chen Z, Kwok E. New image contrast mechanisms in intermolecular double-quantum coherence human MR imaging[J]. J Magn Reson Imag, 2000, 12(2): 311-320.[32]Zhong J, Chen Z, Kwok E. In vivo intermolecular double-quantum imaging on a clinical 1.5T MR scanner[J]. Magn Reson Med, 2000, 43(3): 335-341.[33]Chen Z, Kennedy S D, Zhong J. Quantitation of intermolecular dipolar effects in NMR Spectroscopy and imaging based on demagnetizing field theory[J]. MAGMA, 2000, 11: 122-128.[34]Zhong J, Chen Z, Kwok E, et al. Enhanced sensitivity to molecular diffusion with intermolecular double-quantum coherences: implications and potential applications[J]. Magn Reson Imag, 2001, 19(1): 33-39.[35]Mori S, Hurd R E , Zijl P C M. Imaging of shifted stimulated echoes and multiple spin echoes[J]. Magn Reson Med, 1997, 37(3): 336-340.[36]Bifone A, Payne G S, Leach MO. In vivo multiple spin echoes[J]. J Magn Reson, 1998, 135(1): 33-36.[37]Zhong J, Kwok E, Chen Z. fMRI of auditory stimulation with intermolecular doublequantum coherence at 1.5T[J]. Magn Reson Med, 2001, 45(3): 356-364.[38]Richter W, Richter M, Warren W S, et al. Functional magnetic resonance imaging with intermolecular multiple-quantum coherences[J]. Magn Reson Imag, 2000, 18(5): 489-494.[39]Richter W, Warren W S. Intermolecular multiple quantum coherences in liquids[J]. Concept Magn Reson, 2000, 12(6): 396-409.[40]Mehring K. High Resolution NMR Spectroscopy in Solids\[M\]. Berlin: Springer Press, 1983.[41]Ahn S, Warren W S, Lee S. Quantum treatment of intermolecular multiplequantum coherences with intramolecular J coupling in solution NMR\[J\]. J Magn Reson, 1997, 128(2): 114-129.[42]Kramer F, Deshmukh M V, Kessler H, et al. Residual dipolar coupling constants: An elementary derivation of key equations[J]. Concept Magn Reson Part A, 2004, 21A(1): 10-21.[43]Tjandra N, Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium[J]. Science, 1997, 278(5340): 1 111-1 114.[44]Hansen M R, Mueller L, Pardi A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions[J]. Nat Struct Bio, 1998, 5(12): 1 065-1 074.[45]Brunner E. Residual dipolar couplings in protein NMR[J]. Concepts Magn Reson, 2001, 13(4): 238-259.[46]He Q H, Richter W, Vathyam S, et al. Intermolecular multiple-quantum coherences and cross correlations in solution nuclear magnetic resonance[J]. J Chem Phys, 1993, 98(9): 6 779-6 800.[47]Warren W S, Ahn S. The boundary between liquidlike and solidlike behavior in magnetic resonance[J]. J Chem Phy, 1998, 108(4): 1 313-1 325.[48]Tsocef L, Shinar H, Navon G. Observation of 1H double-quantum filtered signal of water in biological tissues[J]. Magn Reson Med, 1998, 39: 11-17.[49]Fechete R, Demco D E, Blumich B, et al. Anisotropy of collagen fiber orientation in sheep tendon by H-1 double-quantum-filtered NMR signals[J]. J Magn Reson, 2003, 162(1): 166-175.[50]Seo Y, Ikoma K, Takamiya H, et al. 1H double-quantum-filtered MR imaging as a new tool for the assesment of healing of the ruptured Achilles tendon[J]. Magn Reson Med, 1999, 42: 884-889.[51]Shinar H, Eliav U, Navon G. Single and multiple quantum NMR relaxation times of sodium and potassium in red blood cells[J]. Isr J Chem, 1991, 32: 299-304.[52]Eliav U, Shinar H, Navon G. The formation of a secondrank tensor in Na-23 double-quantum filtered NMR as an indicator for order in a biological tissue[J]. J Magn Reson, 1992, 98: 223-229.[53]Sharf Y, Eliav U, Shinar H, et al. Detection of anisotropy in cartilage using 2H double quantum filtered NMR spectroscopy[J]. J Magn Reson B, 1994, 107: 60-67.[54]Shinar H, Seo Y, Navon G. Discrimination between the different compartments in sciatic nerve by 2H double-quantum filtered[J]. J Magn Reson, 1997, 129: 98-104.[55]Sharf Y, Akselrod S, Navon G. Measurement of strain exerted on the blood vessel wall by double-quantum-filtered 2H NMR[J]. Magn Reson Med, 1997, 37: 69-75.[56]Shinar H, Knubovetz T, Eliav U, et al. Sodium interaction with ordered structures in mammalian red blood cells detected by Na-23 double quantum NMR[J]. Biophys J, 1993, 64(4): 1 273-1 279.[57]Knubovets T, Shinar H, Eliav U, et al. A 23Na multiplequantum-filtered NMR study of the effect of the cytoskeleton conformation on the anisotropic motion of the sodium ions in red blood cells[J]. J Magn Reson B, 1996, 110: 16-25.[58]Seo Y, Ikoma K, Takamiya H, et al. 1H double-quantum-filtered MR imaging as a new tool for the assesment of healing of the ruptured Achilles tendon[J]. Magn Reson Med, 1999, 42: 884-889.[59]Ikoma K, Takamiya H, Kusaka Y, et al. 1H double-quantum filtered MR imaging of joints tissues: Bound water specific imaging of tendons, ligaments and cartilagee[J]. Magn Reson Imag, 2001, 19: 1 287-1 296.[60]Chen Z, Chen Z W, Zhong J. Observation and characterization of intermolecular homonuclear single-quantum coherences in liquid nuclear magnetic resonance[J]. J Chem Phys, 2002, 117(18): 8 426-8 435.[61]Berger S. NMR techniques employing selective radiofrequency pulses in combination with PFG[J]. Prog Nucl Mag Res Sp, 1997, 30(3-4): 137-156.[62]Deville G, Bernier M, Delrieux J M. NMR multiple echoes observed in solid 3He[J]. Phys Rev B, 1979, 19(11): 5 666-5 688.[63]Warren W S, Lee S, Richter W, et al. Correcting the classical dipolar demagnetizing field in solution NMR[J]. Chem Phys Lett, 1995, 247(3): 207-214.[64]Bowtell R, Bowley R M, Glover P. Multiple spin echoes in liquids in a high magnetic field[J]. J Magn Reson, 1990, 88(3): 643-651.[65]Ardelean I, Kimmich R, Stapf S, et al. Multiple nonlinear stimulated echoes[J]. J Magn Reson, 1997, 127(2): 217-224.[66]Levitt M H. Demagnetization field effects in two-dimensional solution NMR[J]. Concepts Magn Reson, 1996, 8(1): 77-103.[67]Lee S, Richter W, Vathyam S, et al. Quantum treatment of the effects of dipolar-dipolar interactions in liquid nuclear magnetic resonance[J]. J Chem Phys, 1996, 105(3): 874-900.[68]Minot E D, Callaghan P T, Kaplan N. Multiple echoes, multiple quantum coherence, and the dipolar field: demonstrating the significance of higher order term in the equilibrium density matrix[J]. J Magn Reson, 1999, 140(1): 200-205.[69]Jeener J. Equivalence between the “classical” and the “warren” approaches for the effects of long range dipolar couplings in liquid nuclear magnetic resonance[J]. J Chem Phys, 2000, 112(11): 5 091-5 094.[70]Ardelean I, Kimmich R. Erratum to “demagnetizing field effects on the Hahn echo”[J]. Chem Phys Lett, 2000, 332(5-6): 624-625.[71]Morse P M, Feshbach H. Methods of Theoretical Physics[M]. New York: McGraw-Hill, 1953.[72]Ye Chao-hui(叶朝辉), Xu Ping(许平). Direct measurement of the multiple quantum relaxation time(多量子弛豫时间的直接测量)[J]. Sci China Ser A(中国科学A辑), 1990, 20(11): 1 179-1 188.[73]Robyr P, Bowtell R. Measuring diffusion in liquids with a single gradient pulse[J]. J Magn Reson Series A, 1996, 121(2): 206-208.[74]Capuani S, Curzi F, Alessandri F M, et al. Characterization of trabecular bone by dipolar demagnetizing field MRI[J]. Magn Reson Med, 2001, 46(4): 683-689.[75]Capuani S, Branca R T, Alesiani M, et al. Multiple quantum coherences: New NMR tools to study materials and living systems[J]. Appl Magn Reson, 2004, 27(1-2): 321-327.[76]Shannon K L, Branca R T, Galiana G, et al. Simultaneous acquisition of multiple orders of intermolecular multiplequantum coherence images in vivo[J]. Magn Reson Imag, 2004, 22(10): 1 407-1 412.[77]Bouchard L S, Wehrli F W, Chin C L, et al. Structural anisotropy and internal magnetic fields in rabecular bone: Coupling solution and solid dipolar interactions[J]. J Magn Reson, 2005, 176(1): 27-36.[78]Chen Z, Hou T, Chen Z W, et al. Selective intermolecular zero-quantum coherence in high-resolution NMR under inhomogeneous elds[J]. Chem Phys Lett, 2004, 386(1-3): 200-205.[79]Bouchard L S, Rizi R R, Warren W S. Magnetization structure contrast based on intermolecular multiple-quantum coherences[J]. Magn Reson Med, 2002, 48(6): 973-979. |
[1] | HU Kun, SUN Han-dong, PUNO Pema-tenzin. Application of Quantum Chemical Calculation of Nuclear Magnetic Resonance Parameters in the Structure Elucidation of Natural Products [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 359-376. |
[2] | LIU Wen-qing, SONG Yan-hong, WANG Xue-lu, YAO Ye-feng. In Operando Nuclear Magnetic Resonance Spectroscopy Study on Photocatalytic Methanol Reforming [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 298-308. |
[3] | YIN Tian-peng, WANG Ya-rong, WANG Min, SHI Wen-zhi, ZHANG Zheng-qian, HE Sha-sha. Complete Assignments of NMR Spectral Data of Three C19-Diterpenoid Alkaloids [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 331-340. |
[4] | YANG Yun-han, DU Yao, YING Fei-xiang, YANG Jun-li, XIA Da-zhen, XIA Fu-ting, YANG Li-juan. Inclusion Behavior of Naringenin/β-Cyclodextrin Supramolecular Complex [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 319-330. |
[5] | WANG Ya-lan, WANG Xiao-jing, WANG Zhi-wei. Spectral Analyses and Structural Elucidation of Azilsartan [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 350-358. |
[6] | LIU Ji-hong, JIN Kun, WANG Ping, LUO Gen. An NMR Study on Esculetin and It's Derivatives [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 341-349. |
[7] | WAN Zhi-bin, SONG Jian-hui, GUO Ming-ming. The Application of in Operando Liquid State NMR on Macromolecular Material Characterization [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 408-424. |
[8] | WEI Guo-jing, YI Pei-wei, TAO Quan, FENG Yan-qiu. Comparisons of Different CEST Quantification Metrics Applied in Acute Parkinson's Disease Mouse Model [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 195-207. |
[9] | TANG Ming-xue, SCHMIDT Claudia. Estimation of Nematic Order Parameters via Haller Analysis of 1H NMR Spectra of Liquid Crystals [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 138-147. |
[10] | CAO Yuan, WU Yong-ping, CHEN Dong-jun. A Spectroscopic Study on Tautomerism of Selaginellins from Selaginella [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 155-163. |
[11] | TANG Heng, Gilbert NSHOGOZA, LIU Ming-qing, LIU Ya-qian, RUAN Ke, MA Rong-sheng, GAO Jia. Identification of Novel Hits of the NSD1 SET Domain by NMR Fragment-Based Screening [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 148-154. |
[12] | XIAO Xiong-jie, HU Mary, ZHANG Xu, HU Jian-zhi. An NMR-Based Metabolomics Study of Kidneys from Mice Exposed to Ionizing Radiation [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 172-181. |
[13] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[14] | KOU Xin-hui, LIU Yi-xiang, LIU Xing-hong, LI Cong-gang, LIU Mai-li, JIANG Ling. Visualizing the Pre-Active Conformation of Response Regulator PhoBNF20D in Its apo State [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 164-171. |
[15] | CHEN Xiao-ying, YU Gang-jin, MAO Shi-zhen, LIU Mai-li, DU You-ru. Mixing-Induced Decreases in Critical Micelle Concentration in Aqueous Solution of Surfactants:Probing into the Mechanisms with 1H NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 219-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||