[1] HOCH J A. Two-component and phosphorelay signal transduction[J]. Curr Opin Microbiol, 2000, 3(2):165-170. [2] CHANG C, STEWART R C. The two-component system regulation of diverse signaling pathways in prokaryotes and eukaryotes[J]. Plant Physiol, 1998, 117(3):723-731. [3] ZSCHIEDRICH C P, KEIDEL V, SZURMANT H. Molecular mechanisms of two-component signal transduction[J]. J Mol Biol, 2016, 428(19):3752-3775. [4] GOULIAN M. Two-component signaling circuit structure and properties[J]. Curr Opin Microbiol, 2010, 13(2):184-189. [5] WANG D, LIU Y X, KOU X H, et al. NMR studies on key residues that affect phosphorylation and dephosphorylation processes of bacterial response regulator RR468[J]. Chinese J Magn Reson, 2017, 34(4):397-407. 王丹,刘乙祥, 寇新慧, 等. 细菌反应调节蛋白RR468磷酸化和去磷酸化关键位点的NMR研究[J]. 波谱学杂志, 2017, 34(4):397-407. [6] NEEDHAM J V, CHEN T Y, FALKE J J. Novel ion specificity of a carboxylate cluster magnesium(Ⅱ) binding site:Strong charge selectivit y and weak size selectivity[J]. Biochemistry, 1993, 32(13):3363-3367. [7] LIU T, LIU M L, JIANG L. NMR analysis of divalent metalsbinding to the responseregulator YycF[J]. Chinese J Magn Reson, 2016, 33(1):77-88. 刘婷, 刘买利, 姜凌. 二价金属离子与YycFN相互作用的NMR研究[J]. 波谱学杂志, 2016, 33(1):77-88. [8] KOJETIN D J, THOMPSON R J, BENSON L M, et al. Structural analysis of divalent metals binding to the Bacillus subtilis response regulator Spo0F:the possibility for in vitro metalloregulation in the initiation of sporulation[J]. BioMetals, 2005, 18(5):449-466. [9] VOLKMAN B F, KERN D. Two-state allosteric behavior in a single-domain signaling protein[J]. Science, 2001, 291(5512):2429-2433. [10] LAMARCHE M G, WANNER B L, CREPIN S, et al. The phosphate regulon and bacterial virulence:a regulatory network connecting phosphate homeostasis and pathogenesis[J]. FEMS Microbiol Rev, 2008, 32(3):461-473. [11] GAO R, STOCK A M. Quantitative kinetic analyses of shutting off a two-component system[J]. MBio, 2017, 8(3):e00412-17. [12] SOL M, GOMISR TH F X, SERRANO L, et al. Three-dimensional crystal structure of the transcription factor PhoB receiver domain[J]. J Mol Biol, 1999, 285(2):675. [13] BACHHAWAT P, SWAPNA G V, MONTELIONE G T, et al. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states[J]. Structure, 2005, 13(9):1353-1363. [14] CANALS A, BLANCO A G, COLL M. Sigma70 and PhoB activator:getting a better grip[J]. Transcription, 2012, 3(4):160-164. [15] MACK T R, GAO R, STOCK A M. Probing the roles of the two different dimers mediated by the receiver domain of the response reg ulator PhoB[J]. J Mol Biol, 2009, 389(2):349-364. [16] KOU X H, LIU X H, LIU Y X, et al. Backbone resonance assignment of the response regulator protein PhoBNF20D from Escherichia coli[J]. Biomol NMR Assign, 2018, 12(1):133-137. [17] LIU Y X, ROSE J, HUANG S J, et al. A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKA-family histidine kinases[J]. Nat Commun, 2017, 8:2104. [18] CREAGER-ALLEN R L, SILVERSMITH R E, BOURRET R B. A link between dimerization and autophosphorylation of the response regulator PhoB[J]. J Biol Chem, 2013, 288(30):21755-21769. [19] DELAGLIO F, GRZESIEK S, VUISTER G W, et al. NMRPipe:A multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3):277-293. [20] JOHNSON B A. Using NMRView to visualize and analyze the NMR spectra of macromolecules[M]//KRISTINA D A. Protein NMR Techniques. 2004, 278:313-352. [21] BIERI M, GOOLEY P R. Automated NMR relaxation dispersion data analysis using NESSY[J]. BMC Bioinformatics, 2011, 12:421. [22] CHO H, WANG W R, KIM R, et al. BeF3-acts as a phosphate analog in proteins phosphorylated on aspartate:structure of a BeF3- complex with phosphoserine phosphatase[J]. Proc Natl Acad Sci U S A, 2001, 98(15):8525-8530. [23] WEMMER D E, KERN D. Beryllofluoride binding mimics phosphorylation of aspartate in response regulators[J]. J Bacteriol, 2005, 187(24):8229-8230. [24] LIU Y X, MAO X A, LIU M L, et al. Beryllium fluoride exchange rate accelerated by Mg2+ as discovered by 19F NMR[J]. J Phys Chem A, 2015, 119(1):24-28. [25] LORIA J P, RANCE M, PALMER Ⅲ A G. A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy[J]. J Am Chem Soc, 1999, 121(10):2331-2332. [26] VALLURUPALLI P, HANSEN D F, STOLLAR E, et al. Measurement of bond vector orientations in invisible excited states of proteins[J]. Proc Natl Acad Sci U S A, 2007, 104(47):18473-18477. [27] GARDINO A K, KERN D.[5] -Functional dynamics of response regulators using NMR relaxation techniques[M]//SIMON M I, CRANE B R, CRANE A Eds. Methods Enzymol. Academic Press, 2007:149-165. [28] KERN D, ZUIDERWEG E R P. The role of dynamics in allosteric regulation[J]. Curr Opin Struct Biol, 2003, 13(6):748-757. [29] KARPLUS M, KURIYAN J. Molecular dynamics and protein function[J]. Proc Natl Acad Sci U S A, 2005, 102(19):6679-6685. [30] HENZLER-WILDMAN K, KERN D. Dynamic personalities of proteins[J]. Nature, 2007, 450(7172):964-972. [31] FORMANECK M S, MA L, CUI Q. Reconciling the "old" and "new" views of protein allostery:a molecular simulation study of chemo taxis Y protein (CheY)[J]. Proteins, 2006, 63(4):846-867. [32] HU X H, WANG Y M. Molecular dynamic simulations of the N-terminal receiver domain of NtrC reveal intrinsic conformational flexibility in the inactive state[J]. J Biomol Struct Dyn, 2006, 23(5):509-517. |