[1] RABI I I, ZACHRIAS J R, MILLMAN S, et al. A new method of measuring nuclear magnetic moment[J]. Phys Rev, 1938, 53(4):318. [2] THE NOBEL FOUNDATION. Nobel lectures including presentation speeches and laureates' biographies-physics 1942-1962[M]. Amsterdam:Elsevier Publishing Company, 2013:20. [3] ERNST R R, ANDERSON W A. Application of Fourier transform spectroscopy to magnetic resonance[J]. Rev Sci Instrum, 1966, 37(1):93-102. [4] 王虎. 光引发活性自由基聚合反应的原位核磁跟踪研究[D]. 合肥:中国科学技术大学, 2013. [5] AlAM T M, ALAM M K. Chemometric analysis of NMR spectroscopy data:A review[J]. Annual Reports on NNR Spectroscopy, 2004, 54:41-80. [6] CONSONN R, CAGLIANI L R. Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics[J]. J Agri Food Chem, 2008, 56(16):6873-6880. [7] DENG F, XIAO L Z, TAO Y, et al. Low-field and on-line NMR detection for fluid molecular structure[J]. Chinese J Magn Reson, 2017, 34(2):91-99.邓峰, 肖立志, 陶冶, 等. 低场核磁共振流体分子结构在线探测技术[J]. 波谱学杂志, 2017, 34(2):91-99. [8] UEKI R, YAMAGUCHI K, NONAKA H, et al. H-1 NMR probe for in situ monitoring of dopamine metabolism and its application to inhibitor screening[J]. J Am Chem Soc, 2012, 134(30):12398-12401. [9] HAW J F. In-situ spectroscopy in heterogeneous catalysis[M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2004. [10] EMSLEY L. Advances in magnetic resonance:from stem cells to catalytic surfaces[J]. J Am Chem Soc, 2013, 135(22):8089-8091. [11] 张正行. 有机光谱分析[M]. 北京:人民卫生出版社, 2009. [12] 陈厚. 高分子材料分析测试与研究方法[M]. 北京:化学工业出版社, 2011. [13] FENG Y X, CHU X L, XU Y P, et al. Process nuclear magnetic resonace technology and its applications[J]. Modern Scientific Instruments, 2013(6):109-109.冯云霞, 褚小立, 许育鹏, 等. 在线核磁共振过程分析技术及其应用[J]. 现代科学仪器, 2013(6):109-109. [14] 宁永成. 有机波谱学谱图解析[M]. 北京:科学出版社, 2010. [15] NAJAFI V, ZIAEE F, KABIRI K, et al. Aqueous free-radical polymerization of PEGMEMA macromer:kinetic studies via an on-line H NMR technique[J]. Iran Polym J, 2012, 21(10):683-688. [16] HEROLD H, HARDY E H, RANFT M. et al. Online Rheo-TD NMR for analysing batch polymerisation processes[J]. Micropor Mesopor Mat, 2013, 178(13):74-78. [17] HANSEN M R, GRAF R, SPIESS H W. Solid-state NMR in macromolecular systems:insights on how molecular entities move[J]. Accounts Chem Res, 2013, 46(9):1996-2007. [18] WALTER E D, QI L, CHAMAS A, et al. Operando MAS NMR reaction studies at high temperatures and pressures[J]. J Phys Chem C, 2018, 122(15):8209-8215. [19] ZHANG X Q, PAN Y J, LI Y. The application of NMR on hign molecular polymers[J]. Modern Scientific Instruments, 2001(6):29-33.张雪芹, 潘远江, 李杨. 核磁共振方法在高分子聚合物方面的应用[J]. 现代科学仪器, 2001(6):29-33. [20] SCHNELL I, LANGER B, SONTJENS S H M, et al. Quadruple hydrogen bonds of ureido-pyrimidinone moieties investigated in the solid state by 1H double-quantum MAS NMR spectroscopy[J]. Phys Chem Chem Phys, 2002, 4:3750-3758. [21] LI S, ZHENG J P, GUO M M. In situ variable-temperature multi-nuclear NMR studies of the thermal decomposition mechanism of ionic liquid[J]. Chinese J Magn Reson, 2017, 34(2):156-163.李森, 郑俊鹏, 郭鸣明. 离子液体热分解机理的原位变温多核核磁共振研究[J]. 波谱学杂志, 2017, 34(2):156-163. [22] ZAHEER M A, ZILL J C, MATYSIK J, et al. In situ and in operando characterization of mixing dynamics in liquid-phase reactions by 129Xe NMR spectroscopy[J]. Chemphyschem, 2017, 18(12):1513-1516. [23] STEINRUCK H P, WASSERSCHEID P. Ionic liquids in catalysis[J]. Catal Lett, 2015, 145(1):380-397. [24] PERA-TITUS M, LECLERCG L, CLACENS J M, et al. Pickering interfacial catalysis for biphasic systems:from emulsion design to green reactions[J]. Angew Chem Int Ed, 2015, 54(7):2006-2021. [25] ZHU Y C, LIU B, XU D Y, et al. Application of nuclear magnetic resonance and its combined technology in qualitative and quantitative analysis of natural products[J]. Modern Pharmmacy and Clinic, 2009, 24(4):193-197. 朱颖超, 刘斌, 徐冬艳, 等. 核磁共振及其联用技术在天然产物定性定量分析中的应用[J]. 现代药物与临床, 2009, 24(4):193-197. [26] YUAN L, LIU K, BEI F L, et al. Formation mechanism of flower-like nanostructured polyaniline prepared under guidance of L-valine[J]. Acta Polymerica Sinica, 2017, 49(4):605-615.袁丽, 刘空, 卑凤利, 等. 原位核磁共振技术考察L-缬氨酸导引下合成花状纳米结构聚苯胺形成机理的研究[J]. 高分子学报, 2017, 49(4):605-615. [27] WANG R R, WANG C S, LIU K, et al. Nucleation of polyaniline nano-/macrotubes from anilinium composed micelles[J]. J Phys Chem B, 2014, 118(9):2544-2552. [28] YANG W M, WANG H Q, YAN X Z, et al. NMR study on reaction kinetics of ring-opening polymerization of propylene oxide (PO)[J]. Acta Polymerica Sinica, 1993(4):456-462.杨薇蔓, 汪汉卿, 颜星中, 等. 原位核磁研究环氧丙烷的开环聚合反应动力学[J]. 高分子学报, 19931(4):456-462. [29] MAIWALD M, FISCHER H H, KIM Y K, et al. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring[J]. J Magn Reason, 2004, 166(2):135-146. [30] VARGAS M A, CUDAJ M, HAILU K, et al. Online low-field 1H NMR spectroscopy:monitoring of emulsion polymerization of butyl acrylate[J]. Macromolecules, 2010, 43(13):5561-5568. [31] QIU K Y. Progress of free radical polymerization in recent years[J]. Polymer Bulletin, 2008(7):15-28.丘坤元. 自由基聚合近20年的发展[J]. 高分子通报, 2008(7):15-28. [32] ZHENG A N, GUAN Y, WEI D F, et al. Current situation and breakthrough efforts of the anionic polymerization of olefins after the development for 60 years[J]. Journal of Founctional Polymers, 2017(4):367-421.郑安呐, 管涌, 危大福, 等. 烯烃阴离子聚合发展60年的现状与释疑的努力[J]. 功能高分子学报, 2017(4):367-421. [33] JENKINS A D, JONES R G, MOAD G. Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Terminology 2010)[J]. Pure Appl Chem, 2010, 82:483-491. [34] CHIEFARI J, CHONG Y K, ERCOLE F, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process[J]. Macromolecules, 1998, 31(16):5559-5562. [35] GRUBBS R B, GRUBBS R H. 50th anniversary perspective:living polymerization-emphasizing the molecule in macromolecules[J]. Macromolecules, 2017, 50(18):6979-6997. [36] WEI X L, WEI YL, GONG G B, et al. Applications of controlled radcial polymerization technology in polymer materials synthesis[J]. China Synthetic Rubber Industry, 2016, 39(4):338-344.魏绪玲, 魏玉玲, 龚光碧, 等. 可控自由基聚合技术在合成高分子材料中的应用[J]. 合成橡胶工业, 2016, 39(4):338-344. [37] PERRIER S. 50th anniversary perspective:raft polymerization-a user guide[J]. Macromolecules, 2017, 50(19):7433-7447. [38] VANA P, QUINN J F, DAVIS T P, et al. Recent advances in the kinetics of reversible addition fragmentation chain-transfer polymerization[J]. Aust J Chem, 2002, 55(7):425-431. [39] MCLEARY J B, CALITZ F M, MCKENZIE J M, et al. Beyond inhibition: A 1H NMR investigation of the early kinetics of RAFT-mediated polymerization with the same initiating and leaving groups[J]. Macromolecules, 2004, 37(7):2383-2394. [40] CALITZ F M, MCLEARY J B, MCKENZIE J M, et al. Evidence for termination of intermediate radical species in raft-mediated polymerization[J]. Macromolecules, 2003, 36(26):9687-9690. [41] ZHENG G H, PAN C Y. Reversible addition-fragmentation transfer polymerization in nanosized micelles formed in situ[J]. Macromolecules, 2006, 39(1):95-102. [42] KEDDIE D J. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization[J]. Chem Soc Rev, 2014, 43(2):496-505. [43] CHEN S A, CHANG G Y. Kinetics of the copolymerization of styrene with maleic anhydride in ethyl methyl ketone[J]. Macromol Chem Phys, 1986, 187(7):1597-1602. [44] SANAYEI R A, O'DRISCOLL K F, KLUMPERMAN B. Pulsed laser copolymerization of styrene and maleic anhydride[J]. Macromolecules, 1994, 27(20):5577-5582. [45] DU F S, ZHU M Q, GUO H Q, et al. An ESR study of reversible addition-fragmentation chain transfer copolymerization of styrene and maleic anhydride[J]. Macromolecules, 2002, 35(17):6739-6741. [46] ZHU M Q, WEI L H, LI M, et al. A unique synthesis of a well-defined block copolymer having alternating segments constituted by maleic anhydride and styrene and the self-assembly aggregating behavior thereof[J]. Chem Commun, 2001, 4(4):365-366. [47] VAN DEN DUNGEN E T A, RINQUEST J, PRETORIUS N O, et al. Investigation into the initialization behavior of RAFT-mediated styrene-maleic anhydride copolymerizations[J]. Aust J Chem, 2007, 38(6):742-748. [48] LIU N, GUO M M. Application of in situ in research of RAFT-mediated styrene-maleic anhydride copolymerization[J]. China Synthetic Resin and Plastics, 2018, 35(1):1-5刘娜, 郭鸣明. 用原位核磁研究苯乙烯与马来酸酐的RAFT共聚合[J]. 合成树脂及塑料, 2018, 35(1):1-5. [49] 郭鸣明.原位核磁共振及DOSY研究室温附近RAFT聚合水溶性高分子4-Acryloylmorpholine(AML)及其嵌段共聚物AML-b-AA-b-AML[C]//中国物理学会波谱专业委员会, 第十八届全国波谱学学术年会论文集. 2014. [50] LI W, HUANG K, DONG Y Y, et al. Influence study of pyrolysis kinetics and volatile product characteristics of eucalyptus on slagging based on Tg-DTg-FTIR technique[J]. Acta Energiae Solaris Sinica, 2016, 37(12):3233-3239.李薇, 黄奎, 董艳艳, 等. 热重-红外联用技术分析桉树热解动力学及挥发产物对结渣影响研究[J]. 太阳能学报, 2016, 37(12):3233-3239. [51] WANG D L, WANG H J, WANG L N, et al. Analysis and comparison of polycyclic aromatic hydrocarbons by gas chromatography-mass spectrometry and high performance liquid chromatography[J]. Henan Chemical Industry, 2018(5):53-55.王大陆, 汪宏杰, 王丽娜, 等. 气相色谱-质谱联用和高效液相色谱法对多环芳烃的分析及对比[J]. 河南化工, 2018(5):53-55. [52] YU H. The investigation of NMR determination for isotactic index of homopolypropylene[J]. Petrochemcial Industry Technology, 2011, 18(4):17-19.于红. 核磁共振法测定均聚聚丙烯等规指数[J]. 石化技术, 2011, 18(4):17-19. [53] ALBERT K. On-line use of NMR detection in separation chemistry[J]. J Chromatogr A, 1995, 703(1,2):123-147. [54] ALBERT K, DACHTLER M, GLASER T, et al. On-line coupling of separation techniques to NMR[J]. J Sep Sci, 2015. 22(3):135-143. [55] HILLER W, SINHA P, PASCH H. Online HPLC-NMR of PS-b-PMMA and blends of PS and PMMA, 2-LCCC-NMR at critical conditions of PS[J]. Macromolecular Chemistry & Physics, 2010, 208(18):1965-1978. [56] HILLER W, SINHA P, PASCH H. Online HPLC-NMR of PS-b-PMMA and blends of PS and PMMA, 2-LCCC-NMR at critical conditions of PMMA[J]. Macromolecular Chemistry & Physics, 2010, 210(8):605-613. [57] HILLER W, HEHN M, HOFE T, et al. Online size exclusion chromatography-NMR for the determination of molar mass distributions of copolymers[J]. Anal Chem, 2010, 82(19):8244-8250. [58] HSIEH H L. Anionic polymerization-principles and practical applications[J]. Biomedical Applications of Electroactive Polymers, 1996, 44(6):591-621. [59] HILLER W, HEHN M, SINHA P, et al. Online coupling of two-dimensional liquid chromatography and NMR for the analysis of complex polymers[J]. Macromolecules, 2012, 45(19):7740-7748. [60] ALBERT K, BRAUMANN U, STRECK R, et al. Application of direct on-line coupling of HPLC and SFC with 1H NMR spectroscopy for the investigation of monomeric acrylates[J]. Fresen J Anal Chem, 1995, 352(5):521-528 [61] SCHLOTTERBECK G, TSENG LH, HÄNDEL H, et al. Direct on-line coupling of capillary HPLC with 1H NMR spectroscopy for the structural determination of retinyl acetate dimers:2D NMR spectroscopy in the nanoliter scale[J]. Anal Chem, 1997, 69(7):1421-1425. [62] HILLER W, PASCH H, MACKO T, et al. On-line coupling of high temperature GPC and 1H NMR for the analysis of polymers[J]. J Magn Reson, 2006, 183(2):290-302. [63] CAO S H, NI Z R, HUANG L, et al. In situ monitoring potential-dependent electrochemical process by liquid NMR spectroelectrochemical determination:a proof-of-concept study[J]. Anal Chem, 2017, 89(7):3810-3813. [64] BUSSY U, GIRAUDEAU P, SILVESTRE V, et al. -In situ NMR spectroelectrochemistry for the structure elucidation of unstable intermediate metabolites[J]. Anal Bioanal Chem, 2013, 405(17):5817-5824. [65] BEWERIES T, FISCHER C, PEITZ S, et al. Combination of spectroscopic methods:in situ NMR and UV/Vis measurements to understand the formation of group 4 metallacyclopentanes from the corresponding metallacyclopropenes[J]. J Am Chem Soc, 2009, 131(12):4463-4469. [66] FAVIERA, BARNER-KOWOLLIK C, DAVIS T P, et al. A detailed on-line FT/NIR and 1H NMR spectroscopic investigation into factors causing inhibition in xanthate-mediated vinyl acetate polymerization[J]. Macromolecular Chemistry & Physics, 2010, 205(7):925-936. [67] ODIAN G. Principles of polymerization[M]. Fourth Edition. America:Wiley-Interscience, 2004. [68] SCHILLI C, LANZENDÖRFER M G, MÜLLER A H E. Benzyl and cumyl dithiocarbamates as chain transfer agents in the RAFT polymerization of N-isopropylacrylamide. In situ FT-NIR and MALDI-TOF MS investigation[J]. Macromolecules, 2002, 35(18):6819-6827. |