Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (4): 435-447.doi: 10.11938/cjmr20212900
• Articles • Previous Articles Next Articles
WANG Hui#,WANG Tiantian#,WANG Lijia*()
Received:
2021-03-23
Published:
2023-12-05
Online:
2023-11-27
Contact:
* Tel: 021-55271173, E-mail: CLC Number:
WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images[J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447.
Table 1
Comparison of DM values and HD values between the method proposed in this paper and other methods
左心肌 | LV | ||||
---|---|---|---|---|---|
DM | HD/mm | DM | HD/mm | ||
FCN[ | 0.878 (0.031) | 3.086 (1.129) | 0.896 (0.056) | 2.920 (0.899) | |
U-net[ | 0.903 (0.021) | 2.736 (0.841) | 0.916 (0.050) | 2.825 (1.103) | |
U-net++[ | 0.894 (0.027) | 2.837 (0.617) | 0.922 (0.026) | 2.588 (0.715) | |
SegNet[ | 0.877 (0.034) | 3.039 (0.871) | 0.909 (0.024) | 2.974 (0.622) | |
PSPNet[ | 0.887 (0.025) | 2.846 (0.500) | 0.897 (0.039) | 2.846 (0.923) | |
SERU-net(本文方法) | 0.902 (0.019) | 2.697 (0.582) | 0.928 (0.029) | 2.477 (0.796) |
Fig. 7
Correlation analysis of (a) end diastolic-left ventricular mass, and (b) end systolic-left ventricular mass between SERU-net segmentation and ground truth. Bland-Altman analysis of (c) end diastolic-left ventricular mass, and (d) end systolic-left ventricular mass between SERU-net segmentation and ground truth
Table 2
The correlation coefficient and the mean deviation of ED_LVM, ES_LVM and ground truth of different methods
Method | ED_LVM_R | ED_LVM_MD/g | ES_LVM_R | ES_LVM_MD/g |
---|---|---|---|---|
FCN | 0.992 | 5.793 | 0.990 | 3.854 |
U-net | 0.993 | 4.946 | 0.990 | 3.337 |
U-net++ | 0.993 | 4.272 | 0.991 | 2.703 |
SegNet | 0.994 | 4.165 | 0.992 | 2.857 |
PSPNet | 0.992 | 4.364 | 0.991 | 2.794 |
SERU-net(本文方法) | 0.995 | 3.784 | 0.993 | 2.338 |
Table 3
The correlation coefficients (R) and mean deviations (MD) of EDV, ESV, EF between auto segmentation methods and ground truth
方法 | EDV_R | EDV_MD/mL | ESV_R | ESV_MD/mL | EF_R | EF_MD |
---|---|---|---|---|---|---|
FCN | 0.991 | 5.728 | 0.973 | 4.407 | 0.980 | -0.023 |
U-net | 0.995 | 8.333 | 0.980 | 6.897 | 0.995 | -0.026 |
U-net++ | 0.995 | 7.390 | 0.978 | 4.428 | 0.969 | -0.021 |
SegNet | 0.993 | 9.360 | 0.991 | 5.644 | 0.991 | -0.023 |
PSPNet | 0.990 | 6.780 | 0.986 | 5.449 | 0.977 | -0.030 |
SERU-net(本文方法) | 0.994 | 5.669 | 0.986 | 2.389 | 0.983 | -0.008 |
[1] | HU S S, GAO R L, LIU L S, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209-220. |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220. | |
[2] | HUANG X Q, ZHAO L L, CHEN L Y, et al. Accelerated cardiac CINE imaging with CAIPIRINHA and partial parallel acquisition[J]. Chinese J Magn Reson, 2017, 34(3): 283-293. |
黄小倩, 赵乐乐, 陈利勇, 等. 基于同时多层激发和并行成像的心脏磁共振电影成像[J]. 波谱学杂志, 2017, 34(3): 283-293 | |
[3] | SU X Y, WANG L J, NIE S D, et al. Progress of right ventricle segmentation from short-axis images acquired with cardiac cine MRI[J]. Chinese J Magn Reson, 2019, 36(3): 377-391. |
苏新宇, 王丽嘉, 聂生东, 等. 基于心脏磁共振短轴电影图像的右心室分割新进展[J]. 波谱学杂志, 2019, 36(3): 377-391. | |
[4] |
PETITJEAN C, DACHER J N. A review of segmentation methods in short axis cardiac MR images[J]. Med Image Anal, 2011, 15(2): 169-184.
doi: 10.1016/j.media.2010.12.004 pmid: 21216179 |
[5] |
SANTIAGO C, NASCIMENTO J C, MARQUES J S. Fast segmentation of the left ventricle in cardiac MRI using dynamic programming[J]. Comput Methods Programs Biomed, 2018, 154: 9-23.
doi: 10.1016/j.cmpb.2017.10.028 |
[6] |
YANG C, WU W G, SU Y Q, et al. Left ventricle segmentation via two-layer level sets with circular shape constraint[J]. Magn Reson Imaging, 2017, 38: 202-213.
doi: S0730-725X(17)30011-5 pmid: 28108373 |
[7] |
LEE H Y, CODELLA N C, CHAM M D, et al. Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI[J]. IEEE Trans Biomed Eng, 2010, 57(4): 905-913.
doi: 10.1109/TBME.2009.2014545 |
[8] |
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?[J]. IEEE Trans Med Imaging, 2018, 37(11): 2514-2525.
doi: 10.1109/TMI.2018.2837502 |
[9] |
AVENDI M R, KHERADVAR A, JAFARKHANI H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI[J]. Med Image Anal, 2016, 30: 108-119.
doi: S1361-8415(16)00012-8 pmid: 26917105 |
[10] |
NGO T A, LU Z, CARNEIRO G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance[J]. Med Image Anal, 2017, 35: 159-171.
doi: S1361-8415(16)30038-X pmid: 27423113 |
[11] | YANG H R, SUN J, LI H B, et al. Deep fusion net for multi-atlas segmentation: Application to cardiac MR images[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016, Cham: Springer International Publishing, 2016: 521-528. |
[12] |
ROMAGUERA L V, ROMERO F P, FILHO C F, et al. Myocardial segmentation in cardiac magnetic resonance images using fully convolutional neural networks[J]. Biomed Signal Proces, 2018, 44: 48-57.
doi: 10.1016/j.bspc.2018.04.008 |
[13] | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[J]. Computer Vision and Pattern Recognition, 2017. arXiv:1612.01105. |
[14] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE T Pattern Anal, 2017, 39(12): 2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[15] | RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015. |
[16] | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:4th International Workshop. Granada, Spain, 2018:11045. |
[17] | ZOTTI C, LUO Z, HUMBERT O, et al. GridNet with automatic shape prior registration for automatic MRI cardiac segmentation[C]// Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. Cham: Springer International Publishing, 2018: 73-81. |
[18] | KHENED M, ALEX V, KRISHNAMURTHI G. Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest[C]// Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. Cham: Springer International Publishing, 2018: 140-151. |
[19] |
KHENED M, KOLLERATHU V A, KRISHNAMURTHI G. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers[J]. Med Image Anal, 2019, 51: 21-45.
doi: S1361-8415(18)30848-X pmid: 30390512 |
[20] | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE T Pattern Anal, 2020, 42(8): 1-13. |
[21] | HE K M, ZhANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2016: 770-778. |
[22] |
WANG T T, WANG H, ZHU Y C, et al. Motion tracking of left myocardium in cardiac cine magnetic resonance image based on displacement flow U-Net and variational autoencoder[J]. Acta Phys Sin, 2021, 70(22): 228701.
doi: 10.7498/aps |
王甜甜, 王慧, 朱艳春, 等. 基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪[J]. 物理学报, 2021, 70(22): 228701.
doi: 10.7498/aps |
|
[23] |
LONG J, SHELHAMER E, DARREL T. Fully convolutional networks for semantic segmentation[J]. IEEE T Pattern Anal, 2014, 39(4): 640-651.
doi: 10.1109/TPAMI.2016.2572683 |
[1] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[2] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[3] | LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[4] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[5] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[6] | HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[7] | QIAN Chengyi,WANG Yuanjun. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[8] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[9] | Qin ZHOU, Yuan-jun WANG. Groupwise Registration for Magnetic Resonance Image Based on Variational Inference [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 291-302. |
[10] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
[11] | Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
[12] | Meng CHEN, Chen GENG, Yu-xin LI, Dao-ying GENG, Yi-fang BAO, Ya-kang DAI. Automatic Detection for Cerebral Aneurysms in TOF-MRA Images Based on Fuzzy Label and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 267-277. |
[13] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[14] | Lu HUO,Xiao-xin HU,Qin XIAO,Ya-jia GU,Xu CHU,Luan JIANG. Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 367-380. |
[15] | LIU Peng, ZHONG Yu-min, WANG Li-jia. Automatic Segmentation of Right Ventricle in Cine Cardiac Magnetic Resonance Image Based on a Dense and Multi-Scale U-net Method [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 456-468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||