Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (3): 307-319.doi: 10.11938/cjmr20223040
• Articles • Previous Articles Next Articles
Li Yijie,YANG Xinyu,YANG Xiaomei*()
Received:
2022-11-25
Published:
2023-09-05
Online:
2023-01-29
Contact:
*Tel: 13708045831, E-mail: CLC Number:
Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism[J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319.
Table 1
Average performance of reconstructed images by five network models
网络模型 | PSNR | SSIM | |||||
---|---|---|---|---|---|---|---|
×2 | ×3 | ×4 | ×2 | ×3 | ×4 | ||
PD-net | 32.5438±1.0981 | 30.9821±1.1230 | 30.6958±1.0923 | 0.7736±0.0812 | 0.6802±0.0800 | 0.6345±0.0813 | |
Cascade-net | 31.5583±1.1120 | 30.1253±1.096 | 29.8148±1.0220 | 0.7651±0.0795 | 0.6752±0.0820 | 0.6340±0.0760 | |
KIKI-net | 30.7728±1.4592 | 28.6321±1.3201 | 29.7129±1.5329 | 0.7532±0.0821 | 0.6457±0.0832 | 0.6274±0.0846 | |
DC-WCNN | 32.8576±1.0786 | 30.9972±1.2356 | 30.7214±1.0643 | 0.7821±0.0831 | 0.6853±0.0801 | 0.6399±0.0842 | |
AttMRes-Unet | 33.2185±1.2759 | 31.7255±1.1794 | 30.9175±1.2376 | 0.7862±0.0862 | 0.6972±0.0859 | 0.6497±0.0865 |
Table 3
Average performance of networks in ablation experiments
网络模型 | PSNR | SSIM | |||||
---|---|---|---|---|---|---|---|
×2 | ×3 | ×4 | ×2 | ×3 | ×4 | ||
Unet | 32.5193±1.0901 | 31.3347±1.0899 | 30.8267±1.0921 | 0.7771±0.0761 | 0.6829±0.0770 | 0.6475±0.0769 | |
Att-Unet | 32.9367±1.1096 | 31.5930±1.2019 | 30.9052±1.1099 | 0.7777±0.0799 | 0.6887±0.0811 | 0.6485±0.0787 | |
MRes-Unet | 33.0847±0.9998 | 31.6665±1.0621 | 30.9085±1.2260 | 0.7849±0.0814 | 0.6959±0.0816 | 0.6445±0.0813 | |
SAMRes-Unet | 33.1018±1.3921 | 31.6770±1.2998 | 30.9095±1.2975 | 0.7852±0.0824 | 0.6953±0.0827 | 0.6466±0.0825 | |
CAMRes-Unet | 33.1115±1.3001 | 31.6801±1.2645 | 30.9106±1.2301 | 0.7856±0.0831 | 0.6960±0.0829 | 0.6476±0.0833 | |
AttMRes-Unet | 33.2185±1.2759 | 31.7255±1.1794 | 30.9175±1.2376 | 0.7862±0.0862 | 0.6972±0.0859 | 0.6497±0.0865 |
[1] | LIU Y Y, YANG Y X, ZHU Q Y, et al. Accelerating T1ρ dispersion imaging with multiple relaxation signal compensation[J]. Chinese J Magn Reson, 2022, 39(3): 243-257. |
刘元元, 杨育昕, 朱庆永, 等. 基于多弛豫信号补偿的快速磁共振T1ρ散布成像[J]. 波谱学杂志, 2022, 39(3): 243-257. | |
[2] |
DONOHO D L. Compressed sensing[J]. IEEE Trans Inform Theory, 2006, 52(4): 1289-1306.
doi: 10.1109/TIT.2006.871582 |
[3] | 刘晓晖. 基于压缩感知的磁共振图像稀疏重建算法研究[D]. 广州: 南方医科大学, 2018. |
[4] |
MICHAEL L, DONOHO D L, PAULY J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195.
doi: 10.1002/mrm.21391 pmid: 17969013 |
[5] |
GOPI V P, PALANISAMY P, WAHID K A, et al. Multiple regularization based MRI reconstruction[J]. Signal Process, 2014, 103: 103-113.
doi: 10.1016/j.sigpro.2013.11.001 |
[6] | YU Y, HONG M, LIU F, et al. Compressed sensing MRI using singular value decomposition based sparsity basis[C]// Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, USA, IEEE, 2011: 5734-5737. |
[7] |
HUANG J, ZHANG S, METAXAS D. Efficient MR image reconstruction for compressed MR imaging[J]. Med Image Anal, 2011, 15: 670-679.
doi: 10.1016/j.media.2011.06.001 pmid: 21742542 |
[8] | MA S, YIN W, ZHANG Y. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]// IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA: IEEE, 2008: 1-8. |
[9] | CHEN Z, FU Y, XIANG Y, et al. A novel low-rank model for MRI using theredundant wavelet tight frame[J]. Neurocomputing, 2018: S0925231218301310. |
[10] |
RAVISHANKAR S, BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE T Med Imaging, 2010, 30(5): 1028-1041.
doi: 10.1109/TMI.2010.2090538 |
[11] |
IKRAM S, ZUBAIR S, SHAH J A, et al. Enhancing MR image reconstruction using block dictionary learning[J]. IEEE Access, 2019, 7: 158434-158444.
doi: 10.1109/ACCESS.2019.2949917 |
[12] |
QU X, CAO X, GUO D, et al. Combined sparsifying transforms for compressed sensing MRI[J]. Electron Lett, 2010, 46(2): 121-123.
doi: 10.1049/el.2010.1845 |
[13] |
KNOLL F, BREDIES K, POCK T, et al. Second order total generalized variation (tgv) for MRI[J]. Magn Reson Med, 2011, 65(2): 480-491.
doi: 10.1002/mrm.22595 pmid: 21264937 |
[14] |
YANG X M, MEI Y B, HU X Y, et al. Compressed sensing MRI by integrating deep denoiser and weighted schatten P-norm minimization[J]. IEEE Signal Proc Lett, 2022, 29: 21-25.
doi: 10.1109/LSP.2021.3122338 |
[15] |
JIANG M F, YUAN Z H, YANG X, et al. Accelerating CS-MRI reconstruction with fine-tuning wasserstein generative adversarial network[J]. IEEE Access, 2019, 7: 152347-152357.
doi: 10.1109/Access.6287639 |
[16] |
LI G, LV J, WANG C. A modified generative adversarial network using spatial and channel-wise attention for CS-MRI reconstruction[J]. IEEE Access, 2021, 9: 83185-83198.
doi: 10.1109/ACCESS.2021.3086839 |
[17] | OLAF R, PHILIPP F, THOMAS B. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Imaging Computing and Computer-Assisted Intervention. Munich, Germany: Springer, Cham, 2015: 234-241. |
[18] | LIAN Q S, FU L P, CHEN S Z, et al. A compressed sensing algorithm based on multi-scale residual reconstruction network[J]. Acta Automatica Sinica, 2019(11): 2082-2091. |
练秋生, 富利鹏, 陈书贞, 等. 基于多尺度残差网络的压缩感知重构算法[J]. 自动化学报, 2019, 45(11): 2082-2091 | |
[19] | DAI Z X, LI J X, ZHANG X D, et al. Super-resolution reconstruction of MRI based on DNGAN[J]. Computer Science, 2022, 49(7): 113-119. |
戴朝霞, 李锦欣, 张向东, 等. 基于DNGAN的磁共振图像超分辨率重建算法[J]. 计算机科学, 2022, 49(07): 113-119. | |
[20] | CHAN S H, WANG X, ELGENDY O A. Plug-and-Play ADMM for image restoration: fixed-point convergence and applications[J]. IEEE T Compu Imag, 2017, 3(1): 84-98. |
[21] | ZHANG J, GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018: 1828-1837. |
[22] | LIU Y, LIU Q, ZHANG M, et al. IFR-Net: Iterative feature refinement network for compressed sensing MRI[J]. IEEE T Comput Imag, 6, 434-446. |
[23] | SHAH K D, PATEL D K, PATEL H A, et al. EMED-UNet: An efficient multi-encoder-decoder based UNet for chest X-ray segmentation[C]// 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, IEEE, 2022: 1-6. |
[24] |
HONG L T T, THANH N C, LONG T Q, CRF-EfficientUNet: An improved UNet framework for polyp segmentation in colonoscopy images with combined asymmetric loss function and CRF-RNN layer[J]. IEEE Access, 2021, 9: 156987-157001.
doi: 10.1109/ACCESS.2021.3129480 |
[25] |
RAMZI Z, CIUCIU P, STARCK J L. Benchmarking MRI reconstruction neural networks on large public datasets[J]. Appl Sci, 2020, 10, 1816.
doi: 10.3390/app10051816 |
[26] | JETHI A K, MURUGESAN B, RAM K, et al. Dual-encoder-U-net for fast MRI reconstruction[C]// 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), Iowa City, USA: IEEE, 2020: 1-4. |
[27] |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE T Med Imaging, 39(6): 1856-1867.
doi: 10.1109/TMI.42 |
[28] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA: IEEE, 2016: 770-778. |
[29] | ZBONTAR J, KNOLL F, SRIRAM A, et al. fastMRI: An open dataset and benchmarks for accelerated MRI[J]. arXiv preprint arXiv:1811.08839, 2018. |
[30] | LI Y Y, LI L, LI X S, et al. 3D Dynamic MRI with Homotopic l0 Minimization Reconstruction[J]. Chinese J Magn Reson, 2022, 39(01): 20-32. |
李嫣嫣, 李律, 李雪松, 等. 基于同伦l0范数最小化重建的三维动态磁共振成像[J]. 波谱学杂志, 2022, 39(01): 20-32. | |
[31] | CHENG J, WANG H, YING L, et al. Model learning: Primal dual networks for fastMR imaging[C]// Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, Springer, Cham, 2019: 21-29. |
[32] | SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for MR image reconstruction[C]// International conference on information processing in medical imaging, Springer, Cham, 2017: 647-658. |
[33] |
EO T, JUN Y, KIM T, et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magn Reson Med, 2018, 80(5): 2188-2201.
doi: 10.1002/mrm.27201 pmid: 29624729 |
[34] | RAMANARAYANAN S, MURUGESAN B, RAM K, et al. DC-WCNN: A deep cascade of wavelet based convolutional neural networks for MR image reconstruction[C]// 2020 IEEE 17th International Symposium on Biomedical Imaging, Iowa City, USA: IEEE, 2020: 1069-1073. |
[1] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[2] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[3] | ZHAO Xin, ZHANG Xin, LI Xinjie, WANG Hongkai. Multimodal Glioma Segmentation with Fusion of Multiple Self-attention and Deformable Convolutions [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 280-292. |
[4] | FANG Yi, WAN Qian, YUAN Jiawen, LIN Shaoqiang, LI Ye, LIU Xin, ZHENG Hairong, ZOU Chao. Comparison Study of the Metabolic Characteristics of Three Kinds of Deuterium-labeled Glucose in Rat Glioma Cells [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 239-245. |
[5] | LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[6] | ZHANG Tianning,LEI Zhanzhi,XIAO Liang. Design of a Data Transmission System for Magnetic Resonance Imaging Based on SerialLite II Protocol [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 179-191. |
[7] | QIAN Chengyi,WANG Yuanjun. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[8] | TIAN Yu,ZHOU Chen,ZHANG Yanan,WANG Peng,ZHANG Caiyun,SONG Tianwei,QIAN Junchao. In vivo MR Vessel Size Imaging of Brain Vascular Plasticity After Experimental Spinal Cord Injury [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 158-168. |
[9] | HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[10] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[11] | LI Pan,FANG Delei,ZHANG Junxia,MA Debei. Magnetic Resonance Compatibility Analysis Method of Surgical Robotic System Based on Image Quality Evaluation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 79-91. |
[12] | HAN Bing,XU Jing,WANG Yuanjun,WANG Zhongling. Classification of BI-RADS 3-5 Breast Lesions Based on MRI Radiomics [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 52-67. |
[13] | Yi-feng YANG, Zhang-xuan QI, Sheng-dong NIE. Differentiation of Benign and Malignant Breast Lesions Based on Multimodal MRI and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 401-412. |
[14] | Lan DENG,Yuan-jun WANG. DTI Brain Template Construction Based on Gaussian Averaging [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 413-427. |
[15] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||