Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (3): 258-269.doi: 10.11938/cjmr20233050
• Articles • Previous Articles Next Articles
LU Qiqi,LIAN Zifeng,LI Jialong,SI Wenbin,MAI Zhaohua,FENG Yanqiu*()
Received:
2023-01-09
Published:
2023-09-05
Online:
2023-03-02
Contact:
*Tel: +86 20 61648271, E-mail: CLC Number:
LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network[J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269.
Table 1
Quantitative results of different methods on the simulated testing datasets (mean ± standard deviation)
Methods | NRMSE | SSIM | Methods | NRMSE | SSIM | |
---|---|---|---|---|---|---|
EXP | 0.0616±0.0358 | 0.9571±0.0506 | UNet-EXP | 0.0623±0.0348 | 0.9572±0.0492 | |
M2NCM | 0.0605±0.0354 | 0.9548±0.0502 | UNet-M2 | 0.0576±0.0286 | 0.9582±0.0466 | |
M1NCM | 0.0581±0.0325 | 0.9561±0.0494 | UNet-TV | 0.0494±0.0145 | 0.9724±0.0201 | |
PCANR | 0.0453±0.0122 | 0.9754±0.0182 | UNet-TVp | 0.0438±0.0100 | 0.9796±0.0117 |
Fig. 4
Fig. 5
Bland-Altman analysis for the agreement between the mean
Fig. 6
Bland-Altman analysis for the agreement of the mean
Fig. 7
Fig. 8
[1] |
LABRANCHE R, GILBERT G, CERNY M, et al. Liver iron quantification with MR imaging: A primer for radiologists[J]. Radiographics, 2018, 38(2): 392-412.
doi: 10.1148/rg.2018170079 pmid: 29528818 |
[2] |
WOOD J C, ENRIQUEZ C, GHUGRE N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients[J]. Blood, 2005, 106(4): 1460-1465.
doi: 10.1182/blood-2004-10-3982 |
[3] | HUANG J W, CHENG Z L, YANG Q H, et al. MRI-T2* technique in quantitative analysis of myocardium, liver and pancreas iron deposition in β-thalassemia major and the correlations with glucose metabolism[J]. Chin J Med Imaging Technol, 2021, 37(4): 557-561. |
黄静文, 程子亮, 杨绮华, 等. MRI-T2*技术定量分析β-重型地中海贫血心脏、肝脏、胰腺铁沉积及其与糖代谢的相关性[J]. 中国医学影像技术, 2021, 37(4): 557-561. | |
[4] | LU H M, ZHU J, WANG F, et al. Study on R2* combined with T1-mapping to evaluate iron overload in liver[J]. J Med Imaging, 2022, 32(8): 1036-1039. |
卢慧敏, 朱娟, 汪飞, 等. 磁共振R2*联合T1-mapping对肝脏铁过载评估的研究[J]. 医学影像学杂志, 2022, 32(8): 1036-1039. | |
[5] |
MELONI A, ZMYEWSKI H, RIENHOFF H Y, et al. Fast approximation to pixelwise relaxivity maps: Validation in iron overloaded subjects[J]. Magn Reson Imaging, 2013, 31(7): 1074-1080.
doi: 10.1016/j.mri.2013.05.005 pmid: 23773621 |
[6] |
CONSTANTINIDES C D, ATALAR E, MCVEIGH E R. Signal-to-noise measurements in magnitude images from NMR phased arrays[J]. Magn Reson Med, 1997, 38(5): 852-857.
pmid: 9358462 |
[7] |
FENG Y, HE T, GATEHOUSE P D, et al. Improved MRI R2* relaxometry of iron-loaded liver with noise correction[J]. Magn Reson Med, 2013, 70(6): 1765-1774.
doi: 10.1002/mrm.v70.6 |
[8] |
WANG C, ZHANG X, LIU X, et al. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization[J]. Magn Reson Med, 2018, 80(2): 792-801.
doi: 10.1002/mrm.v80.2 |
[9] |
FENG L, MA D, LIU F. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends[J]. NMR Biomed, 2022, 35(4): e4416.
doi: 10.1002/nbm.v35.4 |
[10] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Lect Notes Comput Sci (including Subser Lect Notes Artif. Intell Lect. Notes Bioinformatics), vol. 9351, Springer, Cham, 2015: 234-241. |
[11] |
LIU F, FENG L, KIJOWSKI R. MANTIS: Model-augmented neural network with incoherent k-space sampling for efficient MR parameter mapping[J]. Magn Reson Med, 2019, 82(1): 174-188.
doi: 10.1002/mrm.27707 pmid: 30860285 |
[12] |
LIU F, KIJOWSKI R, EL FAKHRI G, et al. Magnetic resonance parameter mapping using model-guided self-supervised deep learning[J]. Magn Reson Med, 2021, 85(6): 3211-3226.
doi: 10.1002/mrm.28659 pmid: 33464652 |
[13] |
GETREUER P. Rudin-Osher-Fatemi total variation denoising using split bregman[J]. Image Process Line, 2012, 2: 74-95.
doi: 10.5201/ipol |
[14] | SHI B L, ZHOU Y M, PANG Z F. Image denoising via anisotropic total-variation-based method[J]. J Nantong Univ, Nat Sci Ed, 2019, 18(4): 24-33. |
史宝丽, 周亚美, 庞志峰. 各向异性全变分图像去噪算法[J]. 南通大学学报(自然科学版), 2019, 18(4): 24-33. | |
[15] |
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195.
doi: 10.1002/mrm.21391 pmid: 17969013 |
[16] | LIU J, SUN Y, XU X, et al. Image restoration using total variation regularized deep image prior[C]// IEEE Int Conf Acoust Speech Signal Process, IEEE, 2019: 7715-7719. |
[17] |
STRONG D, CHAN T. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Probl, 2003, 19(6): S165-S187.
doi: 10.1088/0266-5611/19/6/059 |
[18] |
ZHU W. A first-order image restoration model that promotes image contrast preservation[J]. J Sci Comput, 2021, 88(2): 1-23.
doi: 10.1007/s10915-021-01519-7 |
[19] | HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]// 2015 IEEE Int Conf Comput Vis, IEEE, 2015: 1026-1034. |
[20] | SANDINO C M, CHENG J Y, CHEN F, et al. Compressed sensing: From research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging[J]. IEEE Signal Process Mag, 2020, 37(1): 117-127. |
[21] |
WANG Z, BOVIK AC, SHEIKH HR, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612.
doi: 10.1109/TIP.2003.819861 |
[22] |
VAN DER WALT S, SCHÖNBERGER JL, NUNEZ-IGLESIAS J, et al. scikit-image: image processing in Python[J]. Peer J, 2014, 2: e453.
doi: 10.7717/peerj.453 |
[23] | CHENG H T, WANG S S, KE Z W, et al. A deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36(4): 437-445 |
程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积神经网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36(4): 437-445. | |
[24] | WANG Y S, DENG A Q, MAO J L, et al. Automatic segmentation of knee joint synovial magnetic resonance images based on 3D VNetTrans[J]. Chinese J Magn Reson, 2022, 39(3): 303-315 |
王颖珊, 邓奥琦, 毛瑾玲, 等. 基于3D VNetTrans的膝关节滑膜磁共振图像自动分割[J]. 波谱学杂志, 2022, 39(3): 303-315. | |
[25] |
ZHANG T, PAULY J M, LEVESQUE I R. Accelerating parameter mapping with a locally low rank constraint[J]. Magn Reson Med, 2015, 73(2): 655-661.
doi: 10.1002/mrm.25161 pmid: 24500817 |
[26] |
ZHAO B, LU W, HITCHENS T K, et al. Accelerated MR parameter mapping with low-rank and sparsity constraints[J]. Magn Reson Med, 2015, 74(2): 489-498.
doi: 10.1002/mrm.25421 pmid: 25163720 |
[27] |
ROMANO Y, ELAD M, MILANFAR P. The little engine that could: Regularization by Denoising (RED)[J]. SIAM J Imaging Sci, 2017, 10(4): 1804-1844.
doi: 10.1137/16M1102884 |
[28] |
LANDMAN B A, BAZIN P L, SMITH S A, et al. Robust estimation of spatially variable noise fields[J]. Magn Reson Med, 2009, 62(2): 500-509.
doi: 10.1002/mrm.22013 pmid: 19526510 |
[29] |
HENNINGER B, ALUSTIZA J, GARBOWSKI M, et al. Practical guide to quantification of hepatic iron with MRI[J]. Eur Radiol, 2020, 30(1): 383-393.
doi: 10.1007/s00330-019-06380-9 pmid: 31392478 |
[1] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[2] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[3] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[4] | QIAN Chengyi,WANG Yuanjun. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[5] | HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[6] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[7] | Qin ZHOU, Yuan-jun WANG. Groupwise Registration for Magnetic Resonance Image Based on Variational Inference [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 291-302. |
[8] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
[9] | Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
[10] | Meng CHEN, Chen GENG, Yu-xin LI, Dao-ying GENG, Yi-fang BAO, Ya-kang DAI. Automatic Detection for Cerebral Aneurysms in TOF-MRA Images Based on Fuzzy Label and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 267-277. |
[11] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[12] | Lu HUO,Xiao-xin HU,Qin XIAO,Ya-jia GU,Xu CHU,Luan JIANG. Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 367-380. |
[13] | LIU Peng, ZHONG Yu-min, WANG Li-jia. Automatic Segmentation of Right Ventricle in Cine Cardiac Magnetic Resonance Image Based on a Dense and Multi-Scale U-net Method [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 456-468. |
[14] | ZHAO Shang-yi, WANG Yuan-jun. Classification of Alzheimer's Disease Patients Based on Magnetic Resonance Images and an Improved UNet++ Model [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 321-331. |
[15] | GONG Jin-chang, WANG Yu, WANG Yuan-jun. A Method for Segmentation of Glioma on Multimodal Magnetic Resonance Images Based on Wavelet Fusion and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 131-143. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 514
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||