Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (4): 423-434.doi: 10.11938/cjmr20233076
• Articles • Previous Articles Next Articles
LAI Jiawen1,WANG Yuling1,*(),CAI Xiaoyu1,ZHOU Lihua2
Received:
2023-07-24
Published:
2023-12-05
Online:
2023-09-15
CLC Number:
LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM[J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434.
Table 2
Classification experimental results of two-dimensional feature
MKL-SVM | 特征 | ROC-AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
单核 | 2D轴面 | 0.661 | 0.650 | 0.750 | 0.573 |
2D矢状面 | 0.728 | 0.716 | 0.719 | 0.647 | |
2D冠状面 | 0.679 | 0.675 | 0.712 | 0.648 | |
多核 | 2D轴面+2D矢状面 | 0.718 | 0.719 | 0.771 | 0.649 |
2D轴面+2D冠状面 | 0.681 | 0.677 | 0.759 | 0.635 | |
2D冠状面+2D矢状面 | 0.729 | 0.725 | 0.772 | 0.659 | |
2D三视图 | 0.740 | 0.732 | 0.775 | 0.664 |
Table 6
Comparison of experimental results using different methods on the MRNet dataset
研究 | 模型 | ROC-AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
Bien等[ | MRNet | 0.843 | 0.778 | 0.750 | 0.799 |
Tsai等[ | ELNet | 0.869 | 0.775 | 0.814 | 0.745 |
Dunnhofer等[ | ELNet | 0.895 | 0.761 | 0.872 | 0.676 |
Shin等[ | AlexNet | 0.792 | 0.766 | 0.854 | 0.673 |
本文 | MDIFNet | 0.845 | 0.782 | 0.769 | 0.808 |
[1] | GHOSH P, TAYLOR T K F. The Knee joint meniscus: a fibrocartilage of some distinction[J]. Clin Orthop Relat R, 1987, 224: 52-63. |
[2] |
MARKES A R, HODAX J D, MA C B. Meniscus form and function[J]. Clin Sport Med, 2020, 39(1): 1-12.
doi: S0278-5919(19)30068-7 pmid: 31767101 |
[3] |
HUTCHINSON I D, MORAN C J, POTTER H G, et al. Restoration of the meniscus: form and function[J]. Am J Sport Med, 2014, 42(4): 987-998.
doi: 10.1177/0363546513498503 |
[4] | BEAUFILS P, PUJOL N. Management of traumatic meniscal tear and degenerative meniscal lesions. Save the meniscus[J]. Orthop Traumatol-Sur, 2017, 103(8): S237-S244. |
[5] |
OZEKI N, KOGA H, SEKIYA I. Degenerative meniscus in knee osteoarthritis: from pathology to treatment[J]. Life, 2022, 12(4): 603.
doi: 10.3390/life12040603 |
[6] |
OAKDEN-RAYNER L, CARNEIRO G, BESSEN T, et al. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework[J]. Sci Rep, 2017, 7(1): 1648.
doi: 10.1038/s41598-017-01931-w |
[7] |
JIN W, LI X, FATEHI M, et al. Guidelines and evaluation of clinical explainable AI in medical image analysis[J]. Med Image Anal, 2023, 84: 102684.
doi: 10.1016/j.media.2022.102684 |
[8] | FARUCH-BILFELD M, LAPÈGUE F, CHIAVASSA H, et al. Imaging of meniscus and ligament injuries of the knee[J]. Diagn Interv Imag, 2016, 97(7-8): 749-765. |
[9] |
NGUYEN J C, DE SMET A A, GRAF B K, et al. MR imaging-based diagnosis and classification of meniscal tears[J]. Radiographics, 2014, 34(4): 981-999.
doi: 10.1148/rg.344125202 pmid: 25019436 |
[10] | BONIATIS I, PANAYIOTAKIS G, PANAGIOTOPOULOS E. A computer-based system for the discrimination between normal and degenerated menisci from magnetic resonance images[C]// 2008 IEEE International Workshop on Imaging Systems and Techniques, Chania, Greece: IEEE, 2008: 335-339. |
[11] |
KÖSE C, GENÇALIOĞLU O, ŞEVIK U. An automatic diagnosis method for the knee meniscus tears in MR images[J]. Expert Syst Appl, 2009, 36(2): 1208-1216.
doi: 10.1016/j.eswa.2007.11.036 |
[12] | FU J C, LIN C C, WANG C N, et al. Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging[J]. J Ind Prod Eng, 2013, 30(2): 67-77. |
[13] | MA Y, XING C J, XIAO L. Knee joint image segmentation and model construction based on cascaded network[J]. Chinese J Magn Reson, 2022, 39(2): 184-195. |
马岩, 邢藏菊, 肖亮. 基于级联网络的膝关节图像分割与模型构建[J]. 波谱学杂志, 2022, 39(02): 184-195. | |
[14] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[15] | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland: Springer International Publishing, 2014: 818-833. |
[16] | HU Y W, SU X Y, KE X T, et al. The research progress of diagnosing meniscus injury in MRI based on deep learning[J]. Chin J Magn Reson Imaging, 2022, 13(05):167-170. |
胡伟艺, 苏娴彦, 柯晓婷, 等. 基于深度学习的MRI诊断半月板损伤的研究进展[J]. 磁共振成像, 2022, 13(05): 167-170. | |
[17] |
BIEN N, RAJPURKAR P, BALL R L, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15(11): e1002699.
doi: 10.1371/journal.pmed.1002699 |
[18] | TSAI C H, KIRYATI N, KONEN E, et al. Knee injury detection using MRI with efficiently-layered network (ELNet)[C]// Medical Imaging with Deep Learning. Montréel, Canada: PMLR, 2020: 784-794. |
[19] |
FRITZ B, MARBACH G, CIVARDI F, et al. Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference[J]. Skeletal Radiol, 2020, 49: 1207-1217.
doi: 10.1007/s00256-020-03410-2 pmid: 32170334 |
[20] |
RIZK B, BRAT H, ZILLE P, et al. Meniscal lesion detection and characterization in adult knee MRI: a deep learning model approach with external validation[J]. Phys Medica, 2021, 83: 64-71.
doi: 10.1016/j.ejmp.2021.02.010 |
[21] | LU L X, ZHOU J Z, GUO Y C, et al. Prediction of knee injury based on multimodal fusion[J]. Comput Eng Appl, 2021, 57(09): 225-232. |
陆莉霞, 邹俊忠, 郭玉成, 等. 多模态融合的膝关节损伤预测[J]. 计算机工程与应用, 2021, 57(09): 225-232. | |
[22] |
MA Y, QIN Y, LIANG C, et al. Visual cascaded-progressive convolutional neural network (C-PCNN) for diagnosis of meniscus injury[J]. Diagnostics, 2023, 13(12): 2049.
doi: 10.3390/diagnostics13122049 |
[23] |
HUNG T N K, VY V P T, TRI N M, et al. Automatic detection of meniscus tears using backbone convolutional neural networks on knee MRI[J]. J Magn Reson Imaging, 2023, 57(3): 740-749.
doi: 10.1002/jmri.v57.3 |
[24] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[25] | BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[C]// Proceedings of the twenty-first international conference on Machine learning. Banff, Alberta, Canada: ICML, 2004: 6. |
[26] |
SUBRAHMANYA N, SHIN Y C. Sparse multiple kernel learning for signal processing applications[J]. IEEE T Pattern Anal, 2009, 32(5): 788-798.
doi: 10.1109/TPAMI.2009.98 |
[27] | DUNNHOFER M, MARTINEL N, MICHELONI C. Improving MRI-based knee disorder diagnosis with pyramidal feature details[C]// Medical Imaging with Deep Learning. Lübeck, Germany: PMLR, 2021: 131-147. |
[28] |
SHIN H, CHOI G S, SHON O J, et al. Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image[J]. BMC Musculoskel Dis, 2022, 23(1): 1-9.
doi: 10.1186/s12891-021-04954-7 |
[1] | ZHOU Tianli, ZHANG Dian, WU Jizhi, JIA Huihui, CHANG Yan, SHENG Mao, YANG Xiaodong. Application of MRI-based Finite Element Modeling and Analysis in Periacetabular Osteotomy [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 397-409. |
[2] | CHEN Mengying, WU Yupeng, PANG Qifan, ZHONG Haodong, LI Gaiying, LI Jianqi. Simultaneously Neuromelanin-sensitive Imaging and Quantitative Susceptibility Mapping in the Whole Brain [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 385-396. |
[3] | REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422. |
[4] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[5] | FANG Yi, WAN Qian, YUAN Jiawen, LIN Shaoqiang, LI Ye, LIU Xin, ZHENG Hairong, ZOU Chao. Comparison Study of the Metabolic Characteristics of Three Kinds of Deuterium-labeled Glucose in Rat Glioma Cells [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 239-245. |
[6] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[7] | LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[8] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[9] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[10] | ZHANG Tianning,LEI Zhanzhi,XIAO Liang. Design of a Data Transmission System for Magnetic Resonance Imaging Based on SerialLite II Protocol [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 179-191. |
[11] | HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[12] | QIAN Chengyi,WANG Yuanjun. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[13] | TIAN Yu,ZHOU Chen,ZHANG Yanan,WANG Peng,ZHANG Caiyun,SONG Tianwei,QIAN Junchao. In vivo MR Vessel Size Imaging of Brain Vascular Plasticity After Experimental Spinal Cord Injury [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 158-168. |
[14] | HAN Bing,XU Jing,WANG Yuanjun,WANG Zhongling. Classification of BI-RADS 3-5 Breast Lesions Based on MRI Radiomics [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 52-67. |
[15] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||