[1] MENDIS S, PUSKA P, NORRVING B. Global atlas on cardiovascular disease prevention and control[M]. Geneva:Geneva World Health Organization, 2011:1-13. [2] CAUDRON J, FARES J, VIVIER P H, et al. Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease[J]. Eur Radiol, 2011, 21(10):2111-2120. [3] HUANG X Q, ZHAO L L, CHEN L Y, et al. Accelerated cardiac CINE imaging with CAIPIRINHA and partial parallel acquisition[J]. Chinese J Magn Reson, 2017, 34(3):283-293. 黄小倩, 赵乐乐, 陈利勇, 等. 基于同时多层激发和并行成像的心脏磁共振电影成像[J]. 波谱学杂志, 2017, 34(3):283-293. [4] PETITJEAN C, DACHER J N. A review of segmentation methods in short axis cardiac MR images[J]. Med Image Anal, 2011, 15(2):169-184. [5] PETITJEAN C, ZULUAGA M A, BAI W, et al. Right ventricle segmentation from cardiac MRI:A collation study[J]. Med Image Anal, 2015, 19(1):187-202. [6] PENG P, LEKADIR K, GOOVA A, et al. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging[J]. Magn Reson Mater Phy, 2016, 29(2):155-195. [7] AUGER D A, ZHONG X, EPSTEIN F H, et al. Semi-automated left ventricular segmentation based on a guide point model approach for 3D cine DENSE cardiovascular magnetic resonance[J]. J Cardiovasc Magn R, 2014, 16(1):8. [8] GROSGEORGE D, PETITJEAN C, DACHER J N, et al. Graph cut segmentation with a statistical shape model in cardiac MRI[J]. Comput Vis Image Und, 2013, 117(9):1027-1035. [9] LIU H, HU H F, XU X Y, et al. Automatic left ventricle segmentation in cardiac mri using topological stable-state thresholding and region restricted dynamic programming[J]. Acad Radiol, 2012, 19(6):723-731. [10] BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis:Is the problem solved?[J]. IEEE T Med Imaging, 2018, 37(11):2514-2525. [11] ZULUAGA M A, CARDOSO M J, OURSELIN S. Automatic right ventricle segmentation using multi-lablel fusion in cradiac MRI[C]//Medical Image Computing nd Computer-Assisted Intervention-MICCAI 2012. arXiv:2004, 02317. [12] LI Y, WANG L J, NIE S D. Research progress of automatic right ventricle segmentation based on cardiac cine magnetic resonance image[J]. Journal of Biomedical Engineering, 2016, 33(6):1203-1208.李亚, 王丽嘉, 聂生东. 基于心脏电影磁共振图像的右心室自动分割研究进展[J]. 生物医学工程学杂志, 2016, 33(6):1203-1208. [13] TRAN P V. A fully convolutional neural network for cardiac segmentation in short-axis MRI[J]. Computer Vision and Pattern Recognition, 2016. arXiv:1604.00494. [14] RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional networks for biomedical image segmentation[J]. Computer Vision and Pattern Recognition, 2015. arXiv:1505.04597. [15] SU X Y, WANG L J, NIE S D, et al. Progress of right ventricle segmentation from short-axis images acquired with cardiac cine MRI[J]. Chinese J Magn Reson, 2019, 36(3):377-391. 苏新宇, 王丽嘉, 聂生东, 等. 基于心脏磁共振短轴电影图像的右心室分割新进展[J]. 波谱学杂志, 2019, 36(3):377-391. [16] KHENED M, ALEX V, KRISHNAMURTHI G. Fully convolutional multi-scale residual densenets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers[J]. Med Image Anal, 2019, 51:21-45. [17] HUANG G, LIU Z, LAURENS V D M, et al. Densely connected convolutional networks[J]. Computer Vision and Pattern Recognition, 2017. arXiv:1608.06993 [18] AVENDI M R, KHERADVAR A, JAFARKHANI H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI[J]. Med Image Anal, 2016, 30:108-119. [19] YANG H, SUN J, LI H, et al. Deep fusion net for multi-atlas segmentation:application to cardiac MR images[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016, 2016:521-528. [20] PATRAVALI J, JAIN S, CHILAMKURTHY S. 2D-3D fully convolutional neural networks for cardiac MR segmentation[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:130-139. [21] ZHENG Q, DELINGETTE H, DUCHATEAU N, et al. 3D consistent & robust segmentation of cardiac images by deep learning with spatial propagation[J]. IEEE T Med Imaging, 2018, 37(9):2137-2148. [22] LIEMAN S J, LE M, LAU F, et al. FastVentricle:cardiac segmentation with ENet[J]. Computer Vision and Pattern Recognition, 2017. arXiv:1704.04296 [23] ZOTTI C, LUO Z, HUMBERT O, et al. Gridnet with automatic shape prior registration for automatic mri cardiac segmentation[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:73-81. [24] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[J]. Computer Vision and Pattern Recognition, 2014. arXiv:1409.4842 [25] ZHOU Z W, SIDDIQUEE M M R, TAIBAKHSH N, et al. UNet++:A nested U-Net architecture for medical image segmentation[J]. Computer Vision and Pattern Recognition, 2018. arXiv:1807.10165 [26] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE T Pattern Anal, 2017, 39(12):2481-2495. [27] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[J]. Computer Vision and Pattern Recognition, 2017. arXiv:1612.01105. [28] WANG L J, SU X Y, LI Y, et al. Segmentation of right ventricle in cardiac cine MRI using COLLATE fusion-based Multi-Atlas[J]. Chinese J Magn Reson, 2018, 35(4):407-416.王丽嘉, 苏新宇, 李亚, 等. 基于COLLATE融合多图谱的心脏电影MRI右心室分割[J]. 波谱学杂志, 2018, 35(4):407-416. [29] KYHL K, AHTAROVSKI K A, IVERSEN K, et al. The decrease of cardiac chamber volumes and output during positive-pressure ventilation[J]. Am J Physiol Heart Circ Physiol, 2013, 305(7):H1004-H1009. [30] LEI X L, LIU H, HAN Y C, et al. Reference values of cardiac ventricular structure and function by steady-state free-procession MRI at 3.0T in healthy adult chinese volunteers[J]. J Magn Reson Imaging, 2017, 45(6):1684-1692. |