Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (4): 448-461.doi: 10.11938/cjmr20233054
• Articles • Previous Articles Next Articles
ZHAO Wanlei,ZHAO Zhihong,ZHANG Minghui*(),LIU Wenjing
Received:
2023-02-28
Published:
2023-12-05
Online:
2023-06-16
Contact:
* Tel: 15849376426; E-mail: CLC Number:
ZHAO Wanlei, ZHAO Zhihong, ZHANG Minghui, LIU Wenjing. Study on Moisture Absorption and Water Absorption of PMMA Wood-plastic Composites Based on TD-NMR[J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 448-461.
Table 1
Preparation conditions of PMMA wood-plastic composites
样品编号 | 浸渍时间/h | MMA浓度/% | 反应温度/℃ | 偶氮二异丁腈/g |
---|---|---|---|---|
PM#0 | 0 | 0 | 0 | 0 |
PM#6-25 | 6 | 25 | 80 | 0.02 |
PM#6-50 | 6 | 50 | 80 | 0.02 |
PM#6-100 | 6 | 100 | 80 | 0.02 |
PM#12-25 | 12 | 25 | 80 | 0.02 |
PM#12-50 | 12 | 50 | 80 | 0.02 |
PM#12-100 | 12 | 100 | 80 | 0.02 |
PM#24-25 | 24 | 25 | 80 | 0.02 |
PM#24-50 | 24 | 50 | 80 | 0.02 |
PM#24-100 | 24 | 100 | 80 | 0.02 |
Table 2
Moisture absorption rate, average T2 and peak area of untreated wood and PMMA wood plastic composite material after 120 h
试件编号 | 吸湿率/% | T2(1)/ms | T2(2)/ms | 峰面积A(1) | 峰面积A(2) | 总面积A(总) |
---|---|---|---|---|---|---|
PM#0 | 19.30 | 0.36 | 2.68 | 0.12 | 29.52 | 29.64 |
PM#6-25 | 13.23 | 0.30 | 2.49 | 0.23 | 24.21 | 24.44 |
PM#6-50 | 12.58 | 0.60 | 2.47 | 0.37 | 22.94 | 23.31 |
PM#6-100 | 8.74 | 0.20 | 1.96 | 0.37 | 21.37 | 21.74 |
PM#12-25 | 13.03 | 0.30 | 2.60 | 0.22 | 23.46 | 23.68 |
PM#12-50 | 9.90 | - | 2.21 | - | 22.44 | 22.44 |
PM#12-100 | 7.42 | 0.20 | 1.95 | 0.31 | 18.60 | 18.91 |
PM#24-25 | 13.53 | - | 2.60 | - | 24.58 | 24.58 |
PM#24-50 | 9.51 | - | 1.85 | - | 17.82 | 17.82 |
PM#24-100 | 6.07 | - | 1.82 | - | 17.26 | 17.26 |
Table 3
Water absorption, T2 average relaxation time and peak area of untreated wood and PMMA wood plastic composite material after 120 h
试件编号 | 吸水率/% | T2(2)/ms | T2(3)/ms | 峰面积A(2) | 峰面积A(3) | 总面积A(总) |
---|---|---|---|---|---|---|
PM#0 | 130.73 | 4.50 | 102.34 | 69.90 | 13389.10 | 13459.60 |
PM#6-25 | 96.68 | 3.65 | 89.09 | 56.75 | 10254.02 | 10310.77 |
PM#6-50 | 81.65 | 3.40 | 89.07 | 58.44 | 8295.25 | 8353.69 |
PM#6-100 | 34.48 | 2.76 | 33.70 | 47.73 | 4237.27 | 4280.99 |
PM#12-25 | 89.35 | 3.41 | 89.07 | 45.92 | 7672.14 | 7718.06 |
PM#12-50 | 59.67 | 3.40 | 155.52 | 50.78 | 5154.88 | 5205.66 |
PM#12-100 | 31.70 | 2.96 | 77.53 | 51.60 | 2316.82 | 2368.42 |
PM#24-25 | 90.03 | 3.65 | 135.10 | 50.51 | 7688.59 | 7739.10 |
PM#24-50 | 47.81 | 2.58 | 64.47 | 32.74 | 5035.80 | 5068.54 |
PM#24-100 | 20.79 | 2.40 | 31.14 | 38.36 | 2098.09 | 2136.45 |
[1] | ORMONDROYD G, SPEAR M, CURLING S. Modified wood: review of efficacy and service life testing[J]. Constr Mater, 2015, 168(4): 187-203. |
[2] | BI X Q, ZHANG Y, LI P, et al. Poplar impregnation modification and research progress in furniture application[J]. Mater Rep, 2022, 36(21): 21050166-11. |
毕小茜, 张源, 李萍, 等. 杨木浸渍改性及在家具应用中的研究进展[J]. 材料导报, 2022, 36(21): 21050166-11. | |
[3] |
KAMPERIDOU V. Chemical and structural characterization of poplar and black pine wood exposed to short thermal modification[J]. Drvna Ind, 2021, 72(2): 155-167.
doi: 10.5552/drvind |
[4] | LIU S M, CAO J Z. Changes in chemical composition of thermally modified wood and their influen3cing factors[J]. World Forestry Research, 2022, 35 (6): 56-62. |
刘淑敏, 曹金珍. 热改性木材化学成分变化及其影响因素[J]. 世界林业研究, 2022, 35(6): 56-62. | |
[5] |
RADABUTRA S, KHEMTHONG P, SAENGSUWAN S, et al. Preparation and characterization of natural rubber biobased wood adhesive: effect of total solid content, viscosity, and storage time[J]. Polym Bull, 2020, 77(5): 2737-2747.
doi: 10.1007/s00289-019-02881-1 |
[6] | GUO D K, SHEN X S, YANG S, et al. Mechanism of improving dimensional stability of water-soluble vinyl monomer modified wood[J]. Sci Silvae Sin, 2021, 57(7): 158-165. |
郭登康, 沈晓双, 杨昇, 等. 水溶性乙烯基单体改性木材尺寸稳定性提高机制[J]. 林业科学, 2021, 57(7): 158-165. | |
[7] |
HU X, LI D, LUO B, et al. Weathering characteristics of wood plastic composites compatibilized with ethylene vinyl acetate[J]. BioResources, 2020, 15(2): 3930-3944.
doi: 10.15376/biores |
[8] |
QIU H B, YANG S, HAN Y, et al. Improvement of the performance of plantation wood by grafting water soluble vinyl monomers onto cell walls[J]. ACS Sustainable Chem Eng, 2018, 6(11): 14450-14459
doi: 10.1021/acssuschemeng.8b03112 |
[9] |
CHEN P, LI Y, NISHIYAMA Y, et al. Small angle neutron scattering shows nanoscale PMMA distribution in transparent wood biocomposites[J]. Nano Letters, 2021, 21(7): 2883-2890.
doi: 10.1021/acs.nanolett.0c05038 pmid: 33734720 |
[10] | ZHANG C, MA Y, LIN T, et al. Transparent photochromic wood composites incorporating AgBr nanoparticles for UV-shielding applications[J]. Pap Biomater, 2021, 6(4): 21-29. |
[11] |
ALQAHTANI S, ALJUHANI E, FELALY R, et al. Development of photoluminescent translucent wood toward photochromic smart window applications[J]. Ind Eng Chem Res, 2021, 60(23): 8340-8350.
doi: 10.1021/acs.iecr.1c01603 |
[12] |
YUE D, FU G, JIN Z. Transparent wood prepared by polymer impregnation of rubber wood (Hevea brasiliensis Muell. Arg)[J]. BioResources, 2021, 16(2): 2491-2502.
doi: 10.15376/biores |
[13] | 吴佳敏. 透明木材的合成及微观机理研究[D]. 南京林业大学, 2019. |
[14] |
DEFOIRDT N, GARDIN S, VAN DEN BULCKE J, et al. Moisture dynamics of WPC and the impact on fungal testing[J]. Int Biodeter Biodegr, 2010, 64(1): 65-72.
doi: 10.1016/j.ibiod.2009.07.010 |
[15] |
WU X, LIN Y, GUO J Q, et al. Differentiating Pu-erh raw tea from different geographical origins by 1H NMR and U-HPLC/Q-TOF-MS combined with chemometrics[J]. J Food Sci, 2021, 86(3): 779-791.
doi: 10.1111/jfds.v86.3 |
[16] | ZHAN J H, HU Q, ZHU Q J, et al. Marker-free yeast cytochrome c conformational change tracking in cytoplasm based on magnetic resonance[J]. Chinses J Magn Reson, 2023, 40 (1): 22-29. |
占建华, 胡琴, 朱勤俊, 等. 基于磁共振的胞浆中无标记酵母细胞色素c构象变化追踪[J]. 波谱学杂志, 2023, 40(1): 22-29. | |
[17] | ZHANG W, WU Y M, CUI W P, et al. Nuclear magnetic resonance porosity correction method for heavy oil reservoirs[J]. Chinese J Magn Reson, 2021, 38 (2): 204-214. |
张伟, 吴意明, 崔维平, 等. 稠油储层核磁共振孔隙度校正方法[J]. 波谱学杂志, 2021, 38(2): 204-214. | |
[18] | ZHANG R, WANG W, GAO Y, et al. Sensitivity analysis of T2-T1 two-dimensional nuclear magnetic resonance measurement parameters in shale oil reservoirs[J]. Chinese J Magn Reson, 2023, 40(2): 122-135. |
张融, 王伟, 高怡, 等. 页岩油储层T2-T1二维核磁共振测量参数敏感性分析[J]. 波谱学杂志, 2023, 40(2): 122-135. | |
[19] | NIU X X, BAI Z J, YANG Y, et al. Quantitative monitoring of photocatalytic Cr (VI) reduction reaction by in-situ low-field nuclear magnetic resonance relaxation method[J]. Chinese J Magn Reson, 2021, 38 (3): 403-413. |
牛星星, 白志杰, 杨翼, 等. 原位低场核磁共振弛豫法定量监测光催化Cr(VI)还原反应[J]. 波谱学杂志, 2021, 38(3): 403-413. | |
[20] | HU Y F, JIN C W. Conformational dynamics in GPCR signaling by NMR[J]. Magn Reson Lett, 2022, 2(3):139-146. |
[21] |
LI J Y. MA ER N. Characterization of water in wood by time-domain nuclear magnetic resonance spectroscopy (TD-NMR): A Review[J]. Forests, 2021, 12 (7):886.
doi: 10.3390/f12070886 |
[22] |
ROSTOM L, COUYTIER-MURIAS D, RODTS S, et al. Investigation of the effect of aging on wood hygroscopicity by 2D 1H NMR relaxometry[J]. Holzforschung, 2020, 74(4): 400-411.
doi: 10.1515/hf-2019-0052 |
[23] | LI J Y, MA ER N. Effects of heat treatment and delignification on the hygroscopic limit and cell wall saturation of southern pine wood[J]. Journal of Forestry Engineering, 2021, 6(03): 61-68. |
李京予, 马尔妮. 热处理及脱木质素对南方松木材吸湿极限与细胞壁饱和状态的影响[J]. 林业工程学报, 2021, 6(03): 61-68. | |
[24] |
LI J Y, MA ER N, 2D time-domain nuclear magnetic resonance (2D TD-NMR) characterization of cell wall water of Fagus sylvatica and Pinus taeda L[J]. Cellulose, 2022, 29(16): 8491-8508.
doi: 10.1007/s10570-022-04789-y |
[25] | PASSARINI L, MALVEAU C, HERNANDEZ R E. Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance microimaging[J]. Wood Sci and Technol, 2015(49-6): 1251-1218. |
[26] |
FREDRIKSSON, MARIA, THYAESEN, et al. The states of water in norway spruce (picea abies (l.) karst.) studied by low field nuclear magnetic resonance (LFNMR) relaxometry: Assignment of free water populations based on quantitative wood anatomy[J]. Holzforschung 2017, 71(1): 77-90.
doi: 10.1515/hf-2016-0044 |
[27] |
ZHOU F, FU Z Y, ZHOU Y D, et al. Moisture transfer and stress development during high temperature drying of Chinese fir[J]. Dry Technol, 2019, 38(4): 545-554.
doi: 10.1080/07373937.2019.1588900 |
[28] |
XU K, YUAN S F, GAO Y L, et al. Characterization of moisture states and transport in MUF resin-impregnated poplar wood using low field nuclear magnetic resonance[J]. Dry Technol, 2020, 39(6): 1-12
doi: 10.1080/07373937.2021.1860312 |
[29] |
JIN Q, ZHU L, HU D, et al. Nuclear magnetic resonance analysis of water absorption characteristics and dynamic changes in pore size distribution of wood-plastic composites[J]. BioResources, 2021, 16(2): 4064-4080.
doi: 10.15376/biores |
[30] |
GAO J S, WANG X, TONG J W, et al. Large size translucent wood fiber reinforced PMMA porous composites with excellent thermal, acoustic and energy absorption properties[J]. Compos Commun, 2022, 30(12):101059
doi: 10.1016/j.coco.2022.101059 |
[31] |
PROVENCHER S W. A constrained regularization method for inverting data represented by linear algebraic or integral equations[J]. Comput Phys Commun, 1982, 27(3): 213-227.
doi: 10.1016/0010-4655(82)90173-4 |
[32] | 曹金珍. 木材保护与改性[M]. 北京: 中国林业出版社, 2018. |
[33] | WANG X A, ZHU W, DING K L, et al. Preliminary study on the preparation of poplar plastic woodII. Preparation of Poplar Esterified Plywood[J]. Journal of Northwest Forestry University, 2001, (03): 61-63. |
王新爱, 朱玮, 丁克廉, 等. 杨木塑合木制备初探—II. 杨木酯化塑合木的制备[J]. 西北林学院学报, 2001, (03): 61-63. | |
[34] | LI C F, WANG Q W, LIU M L, et al. Effect of preparation process on dimensional stability of larch plywood[J]. China Forest Products Industry, 2015, 42(01): 43-46. |
李春风, 王清文, 刘明利, 等. 制备工艺对落叶松单板塑合木尺寸稳定性的影响[J]. 林产工业, 2015, 42(01): 43-46. | |
[35] |
ISLAM S, HAMDAN S, JUSON I, et al. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites[J]. Mater Design, 2012, 33(1): 419-424.
doi: 10.1016/j.matdes.2011.04.044 |
[36] | WU J M WUY, HUANG Q T, et al. Effect of silane coupling agent modification on properties of transparent wood[J]. China Forest Products Industry, 2019, 46 (08): 22-25 + 29. |
吴佳敏, 吴燕, 黄琼涛, 等. 硅烷偶联剂改性对透明木材性能的影响[J]. 林产工业, 2019, 46(08): 22-25+29. | |
[37] | GAO X, ZHUANG S Z. Bound water content in saturated wood cell wall determined by nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2015, 32(4): 671-676. |
高鑫, 庄寿增. 利用核磁共振测木材吸着水饱和含量[J]. 波谱学杂志, 2015, 32(4): 671-676. | |
[38] | 李新宇. 利用时域核磁共振技术研究木材孔隙分布及水分运动[D]. 内蒙古农业大学, 2017. |
[39] | LIN Y S, ZHANG M H, GUAN M J. Nuclear magnetic resonance analysis of moisture absorption of wood[J]. Journal of Forestry Engineering, 2016, 1(2): 5. |
刘源松, 张明辉, 关明杰. 木材吸湿水分变化的核磁共振分析[J]. 林业工程学报, 2016, 1(2):5. | |
[40] |
BLOEMBERGEN N, PURCELL E M., POUND R V. Relaxation effects in nuclear magnetic resonance absorption[J]. Phys Rev, 1948, 73: 679-712.
doi: 10.1103/PhysRev.73.679 |
[41] | LI C, ZHANG M H, YU J F. Determination of wood moisture content by NMR free induction decay curve[J]. Journal of Beijing Forestry University, 2012, 34(4): 142-145. |
李超, 张明辉, 于建芳. 利用核磁共振自由感应衰减曲线测定木材含水率[J]. 北京林业大学学报, 2012, 34(4): 142-145. | |
[42] | PASSARINI L, MALVEAU C, HERNANDEZ R E. Water state study of wood structure of four hardwoods below fiber saturation point with nuclear magnetic resonance[J]. Wood Fiber Sci, 2014, 46(4): 480-488. |
[43] | THYGEAEN L G, ELDER T. Moisture in untreated, acetylated, and furfurylated norway spruce studied during drying using time domain NMR[J]. Wood Fiber Sci, 2009, 41(2): 194-200. |
[44] |
MICHALSKA-POZOGA I, SZCZEPANEK M. Analysis of particles’ size and degree of distribution of a wooden filler in wood-polymer composites[J]. Materials, 2021, 14(21): 6251.
doi: 10.3390/ma14216251 |
[45] | ČREŠNAR K P, BEK M, LUXBACHER T, BRUNCKO M, et al. Insight into the surface properties of wood fiber-polymer composites[J]. Polymers-Basel, 2021, 13(10): 1535. |
[1] | GAO Yu-lei, LI Xin-yu, LEI Peng, ZHANG Ming-hui. Water Distribution in Poplar during High-Temperature Drying Process Studied by Time-Domain Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 479-490. |
[2] | GAO Yu-lei, ZHANG Ming-hui. Moisture Sorption in Wood Studied by Time Domain Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 295-304. |
[3] | LIU Yuan,CHEN Sheng-li,WU Qiang,CHEN Tie-hong,SUN Ping-chuan. Solid-State NMR Studies on the Structure and Confined Segmental Dynamics of PMMA Nanocomposite [J]. Chinese Journal of Magnetic Resonance, 2015, 32(1): 23-32. |
[4] | Yi Juzhen, Feng Hanqiao. THE NMR STUDY OF CRYSTALLINE PMMA [J]. Chinese Journal of Magnetic Resonance, 1999, 16(1): 40-43. |
[5] | Zeng Yingguang, Tian Yuan, Shen Jiacong, Qiu Zuwnn. ESR STUDY OF PMMA PROPAGATING RADICAL IN BULK POLYMERIZATION PROCESS [J]. Chinese Journal of Magnetic Resonance, 1987, 4(3): 201-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||