Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (1): 87-95.doi: 10.11938/cjmr20212901
• Articles • Previous Articles Next Articles
Qian XU1,2,Lang CHEN1,2,Xiang-ying HU1,Cong-gang LI1,Yi-xiang LIU1,*(),Ling JIANG1,*(
)
Received:
2021-03-24
Online:
2022-03-05
Published:
2021-04-09
Contact:
Yi-xiang LIU,Ling JIANG
E-mail:yixiangliu@wipm.ac.cn;lingjiang@wipm.ac.cn
CLC Number:
Qian XU,Lang CHEN,Xiang-ying HU,Cong-gang LI,Yi-xiang LIU,Ling JIANG. The Effect of T69E-mimicked Phosphorylation on the Interaction Between Bcl-2 and Nur77[J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 87-95.
Fig.1
The signal transduction pathways and the structure of Bcl-2. (a) The two types of apoptosis[8]; (b) The schematic diagram of Bcl-2 structure[8]; (c) The solution structure of Bcl-2/xl, (PDB: 1G5O)[9]. The colors of the four BH motifs correspond to (b), in which the loop of Bcl-xl is shown in red; (d) The signal transduction pathway of Bcl-2-Nur77[12]
Fig.3
Functional validation of wild type full-length Bcl-2 (wtBcl-2). (a) 15N-1H TROSY spectra of unlabeled Bcl-2/xl with 15N-labeled Nur77 LBD (wtNur77); (b) 15N-1H TROSY spectra of unlabeled wtBcl-2 with 15N-labeled wtNur77; (c) 15N-1H TROSY spectra of 15N-labeled wtBcl-2 with unlabeled wtNur77
1 |
JACOBSON M D , WEIL M , RAFF M C . Programmed cell death in animal development[J]. Cell, 1997, 88 (3): 347- 354.
doi: 10.1016/S0092-8674(00)81873-5 |
2 |
CZABOTAR P E , LESSENE G , STRASSER A , et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy[J]. Nat Rev Mol Cell Biol, 2014, 15 (1): 49- 63.
doi: 10.1038/nrm3722 |
3 |
LAVRIK I N . Systems biology of apoptosis signaling networks[J]. Curr Opin Biotechnol, 2010, 21 (4): 551- 555.
doi: 10.1016/j.copbio.2010.07.001 |
4 |
ZOU H , HENZEL W J , LIU X S , et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3[J]. Cell, 1997, 90 (3): 405- 413.
doi: 10.1016/S0092-8674(00)80501-2 |
5 |
ELMORE S . Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35 (4): 495- 516.
doi: 10.1080/01926230701320337 |
6 |
LEBER B , LIN J , ANDREWS D W . Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes[J]. Apoptosis, 2007, 12 (5): 897- 911.
doi: 10.1007/s10495-007-0746-4 |
7 |
YOULE R J , STRASSER A . The BCL-2 protein family: opposing activities that mediate cell death[J]. Nat Rev Mol Cell Biol, 2008, 9 (1): 47- 59.
doi: 10.1038/nrm2308 |
8 |
CHIPUK J E , MOLDOVEANU T , LLAMBI F , et al. The BCL-2 family reunion[J]. Mol Cell, 2010, 37 (3): 299- 310.
doi: 10.1016/j.molcel.2010.01.025 |
9 |
PETROS A M , MEDEK A , NETTESHEIM D G , et al. Solution structure of the antiapoptotic protein bcl-2[J]. Proc Natl Acad Sci U S A, 2001, 98 (6): 3012- 3017.
doi: 10.1073/pnas.041619798 |
10 |
LI H , KOLLURI S K , GU J , et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3[J]. Science, 2000, 289 (5482): 1159- 1164.
doi: 10.1126/science.289.5482.1159 |
11 |
LIN B , KOLLURI S K , LIN F , et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3[J]. Cell, 2004, 116 (4): 527- 540.
doi: 10.1016/S0092-8674(04)00162-X |
12 |
KOLLURI S K , ZHU X W , ZHOU X , et al. A short Nur77-derived peptide converts Bcl-2 from a protector to a killer[J]. Cancer Cell, 2008, 14 (4): 285- 298.
doi: 10.1016/j.ccr.2008.09.002 |
13 |
BREITSCHOPF K , HAENDELER J , MALCHOW P , et al. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway[J]. Mol Cell Biol, 2000, 20 (5): 1886- 1896.
doi: 10.1128/MCB.20.5.1886-1896.2000 |
14 |
FURUKAWA Y , IWASE S , KIKUCHI J , et al. Phosphorylation of Bcl-2 protein by CDC2 kinase during G2/M phases and its role in cell cycle regulation[J]. J Biol Chem, 2000, 275 (28): 21661- 21667.
doi: 10.1074/jbc.M906893199 |
15 | HALDAR S , BASU A , CROCE C M . Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells[J]. Cancer Res, 1998, 58 (8): 1609- 1615. |
16 |
HARADA H , QUEARRY B , RUIZ-VELA A , et al. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity[J]. Proc Natl Acad Sci U S A, 2004, 101 (43): 15313- 15317.
doi: 10.1073/pnas.0406837101 |
17 |
YAMAMOTO K , ICHIJO H , KORSMEYER S J . BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M[J]. Mol Cell Biol, 1999, 19 (12): 8469- 8478.
doi: 10.1128/MCB.19.12.8469 |
18 |
DENG X M , RUVOLO P , CARR B , et al. Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases[J]. Proc Natl Acad Sci U S A, 2000, 97 (4): 1578- 1583.
doi: 10.1073/pnas.97.4.1578 |
19 |
DENG X M , GAO F Q , FLAGG T , et al. Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions[J]. Proc Natl Acad Sci U S A, 2004, 101 (1): 153- 158.
doi: 10.1073/pnas.2533920100 |
20 |
BLAGOSKLONNY M V . Unwinding the loop of Bcl-2 phosphorylation[J]. Leukemia, 2001, 15 (6): 869- 874.
doi: 10.1038/sj.leu.2402134 |
21 | ADEN J , MUSHTAQ A U , DINGELDEIN A , et al. A novel recombinant expression and purification approach for the full-length anti-apoptotic membrane protein Bcl-2[J]. Protein Expr Purif, 2020, 172105628. |
22 |
LIAN L Y . NMR studies of weak protein-protein interactions[J]. Prog Nucl Magn Reson Spectrosc, 2013, 71, 59- 72.
doi: 10.1016/j.pnmrs.2012.11.002 |
23 | 范玉丹. Bcl-2蛋白突变体(模拟磷酸化)的纯化和核磁研究[D]. 大连: 大连理工大学, 2017. |
24 | YU J B , ZHANG Z , ZHANG Z T , et al. The interaction of alpha-synuclein and intact mitochondria studied by NMR[J]. Chinese J Magn Reson, 2021, 38 (2): 164- 172. |
余锦波, 张偲, 张则婷, 等. Alpha-突触核蛋白与完整线粒体相互作用的NMR研究[J]. 波谱学杂志, 2021, 38 (2): 164- 172. | |
25 | CHEN X W , HUANG B L , HUANG S H , et al. NMR research on the clpC operon binding region of transcription factor CtsR from Bacillus subtilis[J]. Chinese J Magn Reson, 2021, 38 (2): 155- 163. |
陈晓雯, 黄碧玲, 黄少华, 等. Bacillus subtilis转录因子CtsR蛋白中DNA结合区域的NMR研究[J]. 波谱学杂志, 2021, 38 (2): 155- 163. |
[1] | Xiao-qing LIN,Shi-jia DU,Hao-lin ZHAN,Yu-qing HUANG,Zhong CHEN. Two-Dimensional Homonuclear Orthogonal-Pattern Phase-Sensitive J-Resolved NMR Spectroscopy Based on Pure Shifts [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 448-459. |
[2] | Yao XIAO,Chang-jiu XIA,Xian-feng YI,Feng-qing LIU,Shang-bin LIU,An-min ZHENG. Progress in the Studies on Sn-Zeolites by Solid-State Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 571-584. |
[3] | Xiao-dong HU,Wen-xian LAN,Chun-xi WANG,Chun-yang CAO. Research Advance and NMR Studies of Anti-Cancer Small Molecules Targeting c-MYC G4-DNA [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 503-513. |
[4] | Jia-min WU,Yu-cheng HE,Zheng XU,Yan-he ZHU,Wen-zheng JIANG. A Wide-Band Matching Method for Radio Frequency Coils Used in Soil Moisture Measurement [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 414-423. |
[5] | Zi-hao WANG,He XU,Tao WANG,Shan-zhong YANG,Yun-sheng DING,Hai-bing WEI. NMR Spectroscopic Studies on (exo, endo) C-2 Monosubstituted Norbornene Derivatives [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 323-335. |
[6] | Chong-wu WANG,Xi HUANG,Lei SHI,Shi-zhen CHEN,Xin ZHOU. Cathepsin B Triggered Hyperpolarization 129Xe MRI Probe for Ultra-Sensitive Lung Cancer Cells Detection [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 336-344. |
[7] | Yi LI,Jia-xiang XIN,Jia-chen WANG,Da-xiu WEI,Ye-feng YAO. Preparation Efficiency of Nuclear Spin Singlet State: A Comparison Among Three Pulse Sequences [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 227-238. |
[8] | Jin-bo YU,Cai ZHANG,Ze-ting ZHANG,Guo-hua XU,Cong-gang LI. Interactions Between α-synuclein and Intact Mitochondria Studied by NMR [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 164-172. |
[9] | Wei ZHANG,Yi-ming WU,Wei-ping CUI,Liang XIAO. Correction for the Nuclear Magnetic Resonance Porosity in Heavy Oil-bearing Reservoirs [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 204-214. |
[10] | Kun MENG,Sheng-jian WANG,Zong-an XUE,Rui-qing HOU,Liang XIAO. Quantitative Evaluation of Shale Pore Structure Using Nuclear Magnetic Resonance Data [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215-226. |
[11] | Zhi-wu ZHANG,Ju YANG,Ze-feng NIE,Shang-xiang YE,Xu DONG,Chun TANG. Development of a Temperature Senor Based on 19F-labeled Phosphorylated Ubiquitin [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 173-181. |
[12] | Xin-yi ZHAO,Dong HAN,Hong-jun LUO,Wen-bin SHEN,Gong-jun YANG. Spectroscopic Studies of Delafloxacin Meglumine [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 268-276. |
[13] | Xiao-wen CHEN,Bi-ling HUANG,Shao-hua HUANG,Yu-fen ZHAO. An NMR Study on the clpC Operon Binding Region of Transcription Factor CtsR from Bacillus subtilis [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 155-163. |
[14] | LIAO Huai-yu, HAN Hong-yuan, CHEN Fei, ZHANG Hai-yan, YANG Jing, ZHAO Tian-zeng. An NMR Study on Two New β-Dihydroagrofuran Compounds in Celastrus angulatus Maxim [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 101-109. |
[15] | WANG Rui-di, XU Bei-bei, SONG Yan-hong, WANG Xue-lu, YAO Ye-feng. Methanol-Water Interaction in Photocatalytic Methanol Reforming ─ An Operando NMR Study [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 43-57. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||