1 |
BLOCK B A . Thermogenesis in muscle[J]. Annu Rev Physiol, 1994, 56 (1): 535- 577.
doi: 10.1146/annurev.ph.56.030194.002535
|
2 |
DUHR S , BRAUN D . Why molecules move along a temperature gradient[J]. Proc Natl Acad Sci U S A, 2006, 103 (52): 19678- 19682.
doi: 10.1073/pnas.0603873103
|
3 |
YANG J M , YANG H , LIN L W . Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells[J]. ACS Nano, 2011, 5 (6): 5067- 5071.
doi: 10.1021/nn201142f
|
4 |
NICHOLLS D G , LOCKE R M . Thermogenic mechanisms in brown fat[J]. Physiol Rev, 1984, 64 (1): 1- 64.
doi: 10.1152/physrev.1984.64.1.1
|
5 |
SILVA J E . Thermogenic mechanisms and their hormonal regulation[J]. Physiol Rev, 2006, 86 (2): 435- 464.
doi: 10.1152/physrev.00009.2005
|
6 |
BAL N C , MAURYA S K , SOPARIWALA D H , et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals[J]. Nat Med, 2012, 18 (10): 1575- 1579.
doi: 10.1038/nm.2897
|
7 |
GARAMI A , STEINER A A , ROMANOVSKY A A . Fever and hypothermia in systemic inflammation[J]. Handb Clin Neurol, 2018, 157, 565- 597.
|
8 |
BLOMQVIST A , ENGBLOM D . Neural mechanisms of inflammation-induced fever[J]. Neuroscientist, 2018, 24 (4): 381- 399.
doi: 10.1177/1073858418760481
|
9 |
CHRETIEN D , BÉNIT P , HA H H , et al. Mitochondria are physiologically maintained at close to 50℃[J]. PLoS Biol, 2018, 16 (1): e2003992.
doi: 10.1371/journal.pbio.2003992
|
10 |
ANDREWS Z B , DIANO S , HORVATH T L . Mitochondrial uncoupling proteins in the CNS: in support of function and survival[J]. Nat Rev Neurosci, 2005, 6 (11): 829- 840.
doi: 10.1038/nrn1767
|
11 |
ARAI S , SUZUKI M , PARK S J , et al. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient[J]. Chem Commun, 2015, 51 (38): 8044- 8047.
doi: 10.1039/C5CC01088H
|
12 |
OKABE K , SAKAGUCHI R , KIYONAKA S , et al. Intracellular thermometry with fluorescent sensors for thermal biology[J]. Pflugers Arch, 2018, 470 (5): 717- 731.
doi: 10.1007/s00424-018-2113-4
|
13 |
NAKANO M , ARAI Y , IPPEI KOTERA I , et al. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response[J]. PLoS ONE, 2017, 12 (2): e0172344.
doi: 10.1371/journal.pone.0172344
|
14 |
CHOWDHURY S , MARIS C , ALLAIN F H T , et al. Molecular basis for temperature sensing by an RNA thermometer[J]. EMBO J, 2006, 25 (11): 2487- 2497.
doi: 10.1038/sj.emboj.7601128
|
15 |
VIJAY-KUMAR S , BUGG C E , COOK W J . Structure of ubiquitin refined at 1.8Å[J]. J Mol Biol, 1987, 194 (3): 531- 544.
doi: 10.1016/0022-2836(87)90679-6
|
16 |
KOMANDER D , RAPE M . The ubiquitin code[J]. Annu Rev Biochem, 2012, 81, 203- 229.
doi: 10.1146/annurev-biochem-060310-170328
|
17 |
TANG C , ZHANG W P . How phosphorylation by PINK1 remodels the ubiquitin system: a perspective from structure and dynamics[J]. Biochemistry, 2020, 59 (1): 26- 33.
doi: 10.1021/acs.biochem.9b00715
|
18 |
KANE L A , LAZAROU M , AI F , et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity[J]. J Cell Biol, 2014, 205 (2): 143- 153.
doi: 10.1083/jcb.201402104
|
19 |
YE S X , GONG Z , YANG J , et al. Ubiquitin is double-phosphorylated by PINK1 for enhanced pH-sensitivity of conformational switch[J]. Protein Cell, 2019, 10 (12): 908- 913.
doi: 10.1007/s13238-019-0644-x
|
20 |
KOYANO F , OKATSU K , KOSAKO H , et al. Ubiquitin is phosphorylated by PINK1 to activate parkin[J]. Nature, 2014, 510 (7503): 162- 166.
doi: 10.1038/nature13392
|
21 |
DONG X , GONG Z , LU Y B , et al. Ubiquitin S65 phosphorylation engenders a pH-sensitive conformational switch[J]. Proc Natl Acad Sci U S A, 2017, 114 (26): 6770- 6775.
|
22 |
WAUER T , SWATEK K N , WAGSTAFF J L , et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis[J]. EMBO J, 2015, 34 (3): 307- 325.
doi: 10.15252/embj.201489847
|
23 |
AN Y F , CHEN L M , SUN S H , et al. QuikChange shuffling: a convenient and robust method for site-directed mutagenesis and random recombination of homologous genes[J]. N Biotechnol, 2011, 28 (4): 320- 325.
doi: 10.1016/j.nbt.2011.03.001
|
24 |
CHEN H F , VIEL S M , ZIARELLI F H , et al. 19F NMR: a valuable tool for studying biological events[J]. Chem Soc Rev, 2013, 42 (20): 7971- 7982.
doi: 10.1039/c3cs60129c
|
25 |
KITEVSKI-LEBLANC J L , PROSSER R S . Current applications of 19F NMR to studies of protein structure and dynamics[J]. Prog Nucl Magn Reson Spectrosc, 2012, 62, 1- 33.
doi: 10.1016/j.pnmrs.2011.06.003
|
26 |
SHEKHAWAT S S , PHAM G H , PRABAKARAN J , et al. Simultaneous detection of distinct ubiquitin chain topologies by 19F NMR[J]. ACS Chem Biol, 2014, 9 (10): 2229- 2236.
doi: 10.1021/cb500589c
|
27 |
DANIELSON M A , FALKE J J . Use of 19F NMR to probe protein structure and conformational changes[J]. Annu Rev Biophys Biomol Struct, 1996, 25, 163- 195.
doi: 10.1146/annurev.bb.25.060196.001115
|
28 |
GOOD N E , DOUGLAS WINGET G , WINTER W , et al. Hydrogen ion buffers for biological research[J]. Biochemistry, 1966, 5 (2): 467.
doi: 10.1021/bi00866a011
|