[1] CUI Y J, DING Z X, FU X Z, et al. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J]. Angew Chem Int Edit, 2012, 51(47):11814-11818. [2] DONG F, LI Y H, WANG Z Y, et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation[J]. Appl Surf Sci, 2015, 358:393-403. [3] LWIN Y, DAUD W R W, MOHAMAD A B, et al. Hydrogen production from steam-methanol reforming:thermodynamic analysis[J]. Int J Hydrogen Energ, 2000, 25(1):47-53. [4] RAMESHAN C, WEILACH C, STADLMAYR W, et al. Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS[J]. J Catal, 2010, 276(1):101-113. [5] MIYAO T, YAMAUCHI M, NAITO S. Liquid phase methanol reforming with water over silica supported Pt-Ru catalysts[J]. Catal Today, 2003, 87(1-4):227-235. [6] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. [7] KAWAI T, SAKATA T. Photocatalytic hydrogen production from liquid methanol and water[J]. J Chem Soc, Chem Commun, 1980, 15:694-695. [8] KUDO A. Photocatalyst materials for water splitting[J]. Catal Surv Asia, 2003, 7(1):31-38. [9] WANG X L, LIU W Q, YU Y Y, et al. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions[J]. Nat Commun, 2016, 7(1):1-7. [10] 叶曼.原位核磁共振技术探究液态环境中甲醇光催化重整反应机理[D].上海:华东师范大学, 2019. [11] XU C B, YANG W S, GUO Q, et al. Photoinduced decomposition of formaldehyde on a TiO2(110) surface, assisted by bridge-bonded oxygen atoms[J]. J Phys Chem Lett, 2013, 4(16):2668-2673. [12] WANG T J, HAO Q Q, WANG Z Q, et al. Deuterium kinetic isotope effect in the photocatalyzed dissociation of methanol on TiO2(110)[J]. J Phys Chem C, 2018, 122(46):26512-26518. [13] XU C B, YANG W S, GUO Q, et al. Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO2(101)[J]. J Am Chem Soc, 2014, 136(2):602-605. [14] BENNETT D A, CARGNELLO M, GORDON T R, et al. Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2 thin films[J]. Phys Chem Chem Phys, 2015, 17(26):17190-17201. [15] BANFIELD J F, VEBLEN D R, SMITH D J. The identification of naturally occurring TiO2(B) by structure determination using high-resolution electron microscopy, image simulation, and distance-least-squares refinement[J]. Am Mineral, 1991, 76(3/4):343-353. [16] ASAHI R, TAGA Y, MANNSTADT W, et al. Electronic and optical properties of anatase TiO2[J]. Phys Rev B, 2000, 61(11):7459. [17] MATSUI M, AKAOGI M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2[J]. Mol Simulat, 1991, 6(4-6):239-244. [18] GRANT F A. Properties of rutile (titanium dioxide)[J]. Rev Mod Phys, 1959, 31(3):646. [19] DYLLA A G, HENKELMAN G, STEVENSON K J. Lithium insertion in nanostructured TiO2(B) architectures[J]. Accounts Chem Res, 2013, 46(5):1104-1112. [20] WILKENING M, HEINE J, LYNESS C, et al. Li diffusion properties of mixed conducting TiO2-B nanowires[J]. Phys Rev B, 2009, 80(6):064302. [21] KUO H L, KUO C Y, LIU C H, et al. A highly active bi-crystalline photocatalyst consisting of TiO2(B) nanotube and anatase particle for producing H2 gas from neat ethanol[J]. Catal Lett, 2007, 113(1/2):7-12. [22] SANCHES F F, MALLIA G, HARRISON N M. Simulating constant current STM images of the rutile TiO2(110) surface for applications in solar water splitting[J]. Mater Res Soc Symp Proc, 2013, 1494:339-344. [23] CHEN T, FENG Z C, WU G P, et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy[J]. J Phys Chem C, 2007, 111(22):8005-8014. [24] HERMAN G S, DOHNALEK Z, RUZYCKI N, et al. Experimental investigation of the interaction of water and methanol with anatase− TiO2(101)[J]. J Phys Chem B, 2003, 107(12):2788-2795. [25] ZHOU C Y, REN Z F, MA Z B, et al. Photochemistry of Methanol on TiO2(110)[C]//Conference on molecular energy transfer. Oxford, UK:2011, 44-0. [26] SCHLEGEL S J, HOSSEINPOUR S, GEBHARD M, et al. How water flips at charged titanium dioxide:an SFG-study on the water-TiO2 interface[J]. Phys Chem Chem Phys, 2019, 21(17):8956-8964. [27] LANG X F, LIANG Y H, SUN L L, et al. Interplay between methanol and anatase TiO2(101) surface:The effect of subsurface oxygen vacancy[J]. J Phys Chem C, 2017, 121(11):6072-6080. [28] BERARDO E, HU H S, VAN DAM H J J, et al. Describing excited state relaxation and localization in TiO2nanoparticles using TD-DFT[J]. J Chem Theory Comput, 2014, 10(12):5538-5548. [29] ZHANG H M, YU X H, MCLEOD J A, et al. First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting[J]. Chem Phys Lett, 2014, 612:106-110. [30] LIU W Q, SONG Y H, WANG X L, et al. In operando nuclear magnetic resonance spectroscopy study on photocatalytic methanol reforming[J]. Chinese J Magn Reson, 201936(3):298-308.刘文卿,宋艳红,王雪璐,等.光催化甲醇重整机理的原位核磁共振研究[J].波谱学杂志, 201936(3):298-308. [31] YE M, YANG Y N, ZHANG R, et al. Effects of co-catalysts and wavelength of light on the products of photocatalytic methanol reforming:an operando NMR study[J]. Chinese J Magn Reson, 2019, 36(4):490-501.叶曼,杨以宁,张燃,等.原位核磁共振技术研究共催化剂类型以及光照波长对甲醇光催化重整产物的影响[J].波谱学杂志, 2019, 36(4):490-501. |