[1] Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions[M]. Oxford: Oxford University Press, 1990.
[2] Massiot D, Fayon F, Capron M, et al. Modelling one and two dimensional solid-state NMR spectra[J]. Magn Reson Chem, 2002, 40(1): 70-76.
[3] Kazimierczuk K, Orekhov V Y. A comparison of convex and non-convex compressed sensing applied to multidimensional NMR[J]. J Magn Reson, 2012, 223: 1-10.
[4] Bruschweiler R. Theory of covariance nuclear magnetic resonance spectroscopy[J]. J Chem Phys, 2004, 121(1): 409-414.
[5] Daniell G J, Hore P J. Maximum entropy and NMR—A new approach[J]. J Magn Reson, 1989, 84(3): 515–536.
[6] Coggins B E, Zhou P. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN[J]. J Biomol NMR, 2008, 42(4): 225-239.
[7] Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1 182-1 195.
[8] Baraniuk R G. Compressive sensing[J]. IEEE Signal Proc Mag, 2007, 24(4): 118-124.
[9] Foucart S, Rauhut H. A Mathematical Introduction to Compressive Sensing[M]. Berlin: Springer, 2013.
[10] Donoho D L. Compressed sensing[J]. IEEE T Inform Theory, 2006, 152(4): 1 289-1 306.
[11] Xu X B, Guo D, Cao X, et al. Reconstruction of self-sparse 2D NMR spectra from undersampled data in the indirect dimension[J]. Sensors (Basel), 2011, 11(9): 8 888-8 909.
[12] Holland D J, Bostock M J, Gladden L F, et al. Fast multidimensional NMR spectroscopy using compressed sensing[J]. Angewandte Chemie, 2011, 50(29): 6 678-6 681.
[13] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Commun Pur Appl Math, 2006, 59(8): 1 207-1 223.
[14] Candes E J, Romberg J K, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE T Inform Theory, 2006, 52(2): 489-509.
[15] Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE T Inform Theory, 2006, 52(12): 5 406-5 425.
[16] Donoho D L. De-noising by soft-thresholding[J]. IEEE T Inform Theory, 1995, 41(3): 613-627.
[17] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J]. Appl Comput Harmon Anal, 2009, 27(3): 265-274.
[18] Fornasier M, Rauhut H. Iterative thresholding algorithms[J]. Appl Comput Harmon Anal, 2008, 25(2): 187-208.
[19] Donoho D L, Johnstone I M. Engineering Advances: New Opportunities for Biomedical Engineers[C]. Baltimore: Proceedings of the 16th Annual International Conference of the IEEE, 1994.
[20] Stern A S, Donoho D L, Hoch J C. NMR data processing using iterative thresholding and minimum l1 norm reconstruction[J]. J Magn Reson, 2007, 188(2): 295-300.
[21] Steidl G, Weickert J, Brox T, et al. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs[J]. SIAM J Numer Anal, 2004, 42(2): 686-713.
[22] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imag Sci, 2009, 2(1): 183-202.
[23] Bruck J R E. On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space[J]. J Math Anal Appl, 1977, 61(1): 159-164.
[24] Passty G B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[J]. J Math Anal Appl, 1979, 72(2): 383-390.
[25] Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York: Springer, 2003.
[26] Candes E J. Compressive sampling[C]. Madrid: Proceedings on the International Congress of Mathematicians, 2006, 1 433-1 452.
[27] Candes E J, Romberg J K. Sparsity and incoherence in compressive sampling[J]. Inverse Probl, 2006, 23(3): 969-985.
[28] Nayak K S, Nishimura D G. Randomized trajectories for reduced aliasing artifact[C]. Proceedings of the 6th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM'98), 1998, 670.
[29] Tsai C M, Nishimura D G. Reduced aliasing artifacts using variable-density k-space sampling trajectories[J]. Magn Reson Med, 2000, 43(3): 452-458.
[30] Zheng Hui(郑慧), Han Ming-yue(韩明月), Hu Bing-wen(胡炳文), et al. Comparison of different sampling schems in compressed sensing reconstruction for DQ-SQ experiments(不同采样模式的固体DQ-SQ实验的压缩感知重建比较)[J]. Chinese J Magn Reson(波谱学杂志), 2015, 31(4): 535-547.
[31] Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25(2): 72-82.
[32] Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI[J]. Magn Reson Med, 2008, 59(2): 365-373.
[33] Otazo R, Kim D, Axel L, et al. Combination of compressed sensing and parallel imaging for highly accelerated first‐pass cardiac perfusion MRI[J]. Magn Reson Med, 2010, 64(3): 767-776.
[34] Ung H, Sung K, Nayak K S, et al. k - t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI[J]. Magn Reson Med, 2009, 61(1): 103-116.
[35] Sommer W, Demco D E, Hafner S, et al. Rotation-synchronized homonuclear dipolar decoupling[J]. J Magn Reson A, 1995, 116(1): 36-45.
[36] Trebosc J, Amoureux J P, Gan Z H. Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei[J]. Solid State Nucl Magn Reson, 2007, 31(1): 1-9. |