[1] 赵刚. 低场磁共振分析仪的磁体和探头的设计[D]. 青岛:山东科技大学, 2005. [2] WANG H M, NIE S D, WANG Y J. The research progress of de-noising methods in low-field NMR signal[J]. Chinese Journal of Medica Physics, 2013, 30(4):4261-4265. 王红敏, 聂生东, 王远军. 低场核磁共振信号降噪方法研究进展[J]. 中国医学物理学杂志, 2013, 30(4):4261-4265. [3] 王鹤. 低场磁共振系统中若干技术问题的研究[D]. 上海:华东师范大学, 2007. [4] SONG Y, XIE H B, YANG G. Segmentation dictionary learning algorithm for compressed sensing MRI[J]. Chinese J Magn Reson, 2016, 33(4):559-569. 宋阳, 谢海滨, 杨光. 用于压缩感知磁共振成像的分割字典学习算法[J]. 波谱学杂志, 2016, 33(4):559-569. [5] HUANG L J, SONG Y, ZHAO X C, et al. A new nombination scheme of GRAPPA and compressed sensing for accelerated magnetic resonance imaging[J]. Chinese J Magn Reson, 2018, 35(1):31-39. 黄丽洁, 宋阳, 赵献策, 等. 一种结合并行成像和压缩感知的快速磁共振成像新方法[J]. 波谱学杂志, 2018, 35(1):31-39. [6] SELESNICK I W, BARANIUK R G, KINGSBURY N C. The dual-tree complex wavelet transform[J]. IEEE Signal Proce Mag, 2005, 22(6):123-151. [7] KIM Y, ALTBACH M, TROUARD T, et al. Compressed sensing using dual-tree complex wavelet transform[C]. Proceedings of the International Society for Magnetic Resonance in Medicine, 2009. [8] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6):1182-1195. [9] YANG J F, ZHANG Y, YIN W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data[J]. IEEE J STSP, 2010, 4(2):288-297. [10] MA S Q, YIN W T, ZHANG Y, et al. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage:2008. [11] HUANG J Z, ZHANG S T, METAXAS D. Efficient MR image reconstruction for compressed MR imaging[J]. Med Image Anal, 2011, 15(5):670-679. [12] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imaging Sci, 2009, 2(1):183-202. [13] CHEN C, HUANG J Z. Compressive sensing MRI with wavelet tree sparsity[C]. International Conference on Neural Information Processing Systems, Lake Tahoe:2012. [14] CHEN C, HUANG J Z. The benefit of tree sparsity in accelerated MRI[J]. Med Image Anal, 2014, 18(6):834-842. [15] CHRÉTIEN S. An alternating l1 approach to the compressed sensing problem[J]. IEEE Signal Proc Let, 2010, 17(2):181-184. [16] LUSTIG M, DONOHO D L, SANTOS J M, et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25(2):72-82. [17] ZHU Z, WAHID K, BABYN P, et al. Compressed sensing-based MRI reconstruction using complex double-density dual-tree DWT[J]. Int J Biomed Imaging, 2013:907501. [18] HUANG J Z, ZHANG T, METAXAS D. Learning with structured sparsity[J]. J Mach Learn Res, 2011, 12(7):3371-3412. [19] BACH F, JENATTON R, MAIRAL J, et al. Structured sparsity through convex optimization[J]. Statist Sci, 2012, 27(4):450-468. |