[1] Chang C H, Ji J. Compressed sensing MRI with multichannel data using multicore processors[J]. Magn Reson Med, 2010, 64(4):1135-1139.
[2] Candès E J. Proceedings of the International Congress of Mathematicians[C]. Madrid:J Eur Math Soc, 2006.
[3] Donoho D. Compressed sensing[J]. IEEE T Inform Theory, 2006, 52(4):1289-1306.
[4] Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3):549-571.
[5] Cande's E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Commun Pure Appl Math, 2006, 59(8):1207-1223.
[6] Lustig M, Donoho D, Pauly J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6):1182-1195.
[7] Lustig M, Santors J M, Donoho D L, et al. k-t Sparse:High frame-rate dynamic MRI exploiting spatio-temporal sparsity[J]. Proc Annu Meeting ISMRM, 2006:2420.
[8] Nam S, Akcakaya M, Basha T, et al. Compressed sensing reconstruction for whole-heart imaging with 3D radial trajectories:A graphics processing unit implementation[J]. Magn Reson Med, 2013, 69(1):91-102.
[9] Candes E J, Romberg J K, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE T Inform Theory, 2006, 52(2):489-509.
[10] Goldstein T, Osher S. The split Bregman methods for L1 regularized problems[J]. SIAM J Imaging Sci, 2009, 2(2):323-343.
[11] Smith D, Gore J, Yankeelov T, et al. Real-time compressive sensing MRI reconstruction using GPU computing and split Bregman methods[J]. Int J Biomed Imaging, 2012, doi:10.1155/2012/864827.
[12] Sung K, Hargreaves B A. High-frequency subband compressed sensing MRI using quadruplet sampling[J]. Magn Reson Med, 2013, 70(5):1306-1318.
[13] Tsai C M, Nishimura D G. Reduced aliasing artifacts using variable density k-space sampling trajectories[J]. Magn Reson Med, 2000, 43(3):452-458.
[14] Qu X B, Guo D, Ning B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magn Reson Imaging, 2012, 30(7):964-977.
[15] Qu X B, Hou Y K, Lam F, et al. Magnetic resonance image reconstruction fromundersampled measurements using a patch-based nonlocal operator[J]. Med Image Anal, 2014, 18(6):843-856.
[16] Liu Q G, Wang S S, Yang K, et al. Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating[J]. IEEE T Med Imaging, 2013, 32(7):1290-1301.
[17] Vellagoundar J, Reddy M R. Optimal k-space sampling scheme for compressive sampling MRI[J]. IECBES, 2012, doi:10.1109/IECBES.2012.6494108.
[18] Liu D D, Liang D, Liu X, et al. Under-sampling trajectory design for compressed sensing MRI[J]. IECBES, 2012, doi:10.1109/EMBC.2012.6345874.
[19] Ravishankar S, Bresler Y. Adaptive sampling design for compressed sensing MRI[J]. Conf Proc IEEE Eng Med Biol Soc, 2011, doi:10.1109/IEMBS.2011.6090639.
[20] Yang Y, Liu F, Xu W L, et al. Compressed sensing MRI via two-stage reconstruction[J]. IEEE Trans Biomed Eng, 2015, 62(1):110-118.
[21] Kutyniok G. Theory and applications of compressed sensing[J]. GAMM-Mitteilungen, 2013, 36(1):79-101.
[22] Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25(2):72-82.
[23] Lustig M, Donoho D, Santos J M, et al. A look at how CS can improve on current imaging techniques[J]. IEEE Signal Proc Mag, 2008, 24(2):72-82. |