[1] WYLIE B J, RIENSTRA C M. Multidimensional solid state NMR of anisotropic interactions in peptides and proteins[J]. J Chem Phys, 2008, 128(5):052207. [2] FACELLI J C. Chemical shift tensors:Theory and application to molecular structural problems[J]. Prog Nucl Mag Res Sp, 2011, 58(3,4):176-201. [3] SAITO H, ANDO I, RAMAMOORTHY A. Chemical shift tensor-the heart of NMR:Insights into biological aspects of proteins[J]. Prog Nucl Mag Res Sp, 2010, 57(2):181-228. [4] BAX A, SZEVERENYI N M, MACIEL G E. Correlation of isotropic shifts and chemical-shift anisotropies by two-dimensional fourier-transform magic-angle hopping NMR-spectroscopy[J]. J Magn Reson, 1983, 52(1):147-152. [5] LOTH K, PELUPESSY P, BODENHAUSEN G. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy[J]. J Am Chem Soc, 2005, 127(16):6062-6068. [6] BROUWER D H, RIPMEESTER J A. Symmetry-based recoupling of proton chemical shift anisotropies in ultrahigh-field solid-state NMR[J]. J Magn Reson, 2007, 185(1):173-178. [7] YAO L, GRISHAEV A, CORNILESCU G, et al. The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy[J]. J Am Chem Soc, 2010, 132(31):10866-10875. [8] HOU G J, PARAMASIVAM S, YAN S, et al. Multidimensional magic angle spinning NMR spectroscopy for site-resolved measurement of proton chemical shift anisotropy in biological solids[J]. J Am Chem Soc, 2013, 135(4):1358-1368. [9] KOVER K E, BATTA G, HRUBY V J. Solution-phase chemical shift anisotropy as a promising tool to probe intermolecular interactions and peptide bond geometry:a case study on 15N-labeled Nα-t-Boc-L-valine[J]. Magn Reson Chem, 2003, 41(10):828-836. [10] TESSARI M, MULDER F A A, BOELENS R, et al. Determination of amide proton CSA in 15N-labeled proteins using 1H CSA/15N-1H dipolar and 15N CSA/15N-1H dipolar cross-correlation rates[J]. J Magn Reson, 1997, 127(1):128-133. [11] TJANDRA N, BAX A. Solution NMR measurement of amide proton chemical shift anisotropy in 15N-enriched proteins. correlation with hydrogen bond length[J]. J Am Chem Soc, 1997, 119(34):8076-8082. [12] CORNILESCU G, BAX A. Measurement of proton, nitrogen, and carbonyl chemical shielding anisotropies in a protein dissolved in a dilute liquid crystalline phase[J]. J Am Chem Soc, 2000, 122(41):10143-10154. [13] BERGLUND B, VAUGHAN R W. Correlations between proton chemical shift tensors, deuterium quadrupole couplings, and bond distances for hydrogen bonds in solids[J]. J Chem Phys, 1980,73(5):2037-2043. [14] GE Y W, HUNG I, LIU X L, et al. Measurement of amide proton chemical shift anisotropy in perdeuterated proteins using CSA amplification[J]. J Magn Reson, 2017, 284:33-38. [15] HADDIX D C, LAUTERBUR C C. Molecular dynamics and structure of solids[J]. Natl Bur Stand, 1969:403-406. [16] MOROZ N K, PANICH A M, GABUDA S P. Shielding anisotropy of H-bonded protons in Cs2GeF6·4HF[J]. J Magn Reson, 1969, 1983, 53(1):1-6. [17] TEKELY P, PALMAS P, MUTZENHARDT P. Influence of proton chemical-shift anisotropy on magic-angle spinning spectra of hydrate crystals[J]. J Magn Reson, 1997, 127(2):238-240. [18] IWAMIYA J H, SINTON S W, LIU H, et al. Multiple-pulse sequences for homonuclear decoupling. experimental verification[J]. J Magn Reson, 1969, 1992, 100(2):367-375. [19] HU J Z, ALDERMAN D W, YE C H, et al. An isotropic chemical shift-chemical shift anisotropy magic-angle slow-spinning 2D NMR experiment[J]. J Magn Reson Ser A, 1993, 105(1):82-87. [20] HOHWY M, RASMUSSEN J T, BOWER P V, et al. 1H chemical shielding anisotropies from polycrystalline powders using MSHOT-3 based CRAMPS[J]. J Magn Reson, 1998, 133(2):374-378. [21] PINES A, VEGA S, MEHRING M. NMR double quantum spin decoupling in solids[J]. Phys Rev, 2011, 18(1):112-125. [22] PINES A, RUBEN D J, VEGA S, et al. New approach to high-resolution proton NMR in solids:deuterium spin decoupling by multiple-quantum transitions[J]. Phys Rev Lett, 1976, 36(36):110-113. [23] VEGA S, SHATTUCK T W, PINES A. Fourier-transform double-quantum NMR in solids[J]. Phys Rev Lett, 1976, 37(1):43-46. [24] ACHLAMA A M. The chemical shift and EFG tensors at the carboxylic deuterons of α-oxalic acid dihydrate[J]. J Magn Reson, 1980, 41(3):374-380. [25] ACHLAMA A M. The chemical shift, dipolar, and quadrupolar tensors of deuterium in potassium bicarbonate[J]. J Chem Phys, 1981, 74(6):3623-3625. [26] REX GERALD I I, BERNHARD T, HAEBERLEN U, et al. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study[J]. J Am Chem Soc, 1993, 115(2):777-782. [27] DUMA L, ABERGEL D, TEKELY P, et al. Proton chemical shift anisotropy measurements of hydrogen-bonded functional groups by fast magic-angle spinning solid-state NMR spectroscopy[J]. Chem Commun, 2008, 20:2361-2363. [28] PANDEY M K, YARAVA J R, ZHANG R, et al. Proton-detected 3D 15N/1H/1H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70 kHz MAS[J]. Solid State Nucl Magn Reson, 2016, 76-77:1-6. [29] ZHANG R, MROUE K H, RAMAMOORTHY A. Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy[J]. Acc Chem Res, 2017, 50(4):1105-1113. [30] HOU G, GUPTA R, POLENOVA T, et al. A magic-angle spinning NMR method for the site-specific measurement of proton chemical-shift anisotropy in biological and organic solids[J]. Isr J Chem, 2014, 54(1,2):171-183. [31] MOON S, CASE D A. A new model for chemical shifts of amide hydrogens in proteins[J]. J Biomol NMR, 2007, 38(2):139-150. [32] OSAPAY K, CASE D A. A new analysis of proton chemical shifts in proteins[J]. J Am Chem Soc, 1991, 113(25):9436-9444. [33] OSAPAY K, CASE D A. Analysis of proton chemical shifts in regular secondary structure of proteins[J]. J Biomol NMR, 1994, 4(2):215-230. [34] SITKOFF D, CASE D A. Density functional calculations of proton chemical shifts in model peptides[J]. J Am Chem Soc, 1997, 119(50):12262-12273. [35] DEJAEGERE A, BRYCE R A, CASE D A. An empirical analysis of proton chemical shifts in nucleic acids[J]. Acs Symposium, 1999, 732:194-206. [36] TANG S, CASE D A. Calculation of chemical shift anisotropy in proteins[J]. J Biomol NMR, 2011, 51(3):303-312. [37] SHARMA Y, KWON O Y, BROOKS B, et al. An ab initio study of amide proton shift tensor dependence on local protein structure[J]. J Am Chem Soc, 2002, 124(2):327-335. [38] PARKER L L, HOUK A R, JENSEN J H. Cooperative hydrogen bonding effects are key determinants of backbone amide proton chemical shifts in proteins[J]. J Am Chem Soc, 2006, 128(30):9863-9872. [39] SUZUKI Y, TAKAHASHI R, SHIMIZU T, et al. Intra-and intermolecular effects on 1H chemical shifts in a silk model peptide determined by high-field solid state 1H NMR and empirical calculations[J]. J Phys Chem B, 2009, 113(29):9756-9761. [40] MIAH H K, BENNETT D A, IUGA D, et al. Measuring proton shift tensors with ultrafast MAS NMR[J]. J Magn Reson, 2013, 235(Supplement C):1-5. [41] PANDEY M K, NISHIYAMA Y. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR[J]. J Magn Reson, 2015, 261:133-140. [42] PANDEY M K, MALON M, RAMAMOORTHY A, et al. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy[J]. J Magn Reson, 2015, 250(Supplement C):45-54. [43] PANDEY M K, NISHIYAMA Y. Determination of relative orientation between 1H CSA tensors from a 3D solid-state NMR experiment mediated through 1H/1H RFDR mixing under ultrafast MAS[J]. Solid State Nucl Magn Reson, 2015, 70(Supplement C):15-20. [44] CARRAVETTA M, EDEN M, ZHAO X, et al. Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids[J]. Chem Phys Lett, 2000, 321(3,4):205-215. [45] ZHAO X, EDEN M, LEVITT M H. Recoupling of heteronuclear dipolar interactions in solid-state NMR using symmetry-based pulse sequences[J]. Chem Phys Lett, 2001, 342(3):353-361. [46] GULLION T. Extended Chemical-Shift Modulation[J]. J Magn Reson, 1989, 85(3):614-619. [47] RALEIGH D P, KOLBERT A C, OAS T G, et al. Enhancement of the effect of small anisotropies in magic-angle spinning nuclear magnetic resonance[J]. J Chem Soc, Faraday Trans, 1988, 84(11):3691-3711. [48] HUNG I, GAN Z. An efficient amplification pulse sequence for measuring chemical shift anisotropy under fast magic-angle spinning[J]. J Magn Reson, 2011, 213(1):196-199. [49] WISHART D S, SYKES B D, RICHARDS F M. The chemical shift index:a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy[J]. Biochemistry, 1992, 31(6):1647-1651. [50] WISHART D S, SYKES B D. [12] Chemical shifts as a tool for structure determination[J]. Methods Enzymol, 1994, 239:363-392. [51] WISHART D, SYKES B D. The 13C Chemical-shift index:a simple method for the identification of protein secondary structure using 13C chemical-shift data[J]. J Biomol NMR, 1994, 4(2):171-180. [52] ANDREAS L B, JAUDZEMS K, STANEK J, et al. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR[J]. Proc Natl Acad Sci U S A, 2016, 113(33):9187-9192. |