[1] Candes E J, Romberg J K, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE T Inform Theory, 2006, 52(2): 489-509. [2] Donoho D L. Compressed sensing[J]. IEEE T Inform Theory, 2006, 52(4): 1 289-1 306. [3] Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies[J]. IEEE T Inform Theory, 2006, 52(12): 5 406-5 425. [4] Wech T, Lemke A, Medway D, et al. Accelerating cine-MR imaging in mouse hearts using compressed sensing[J]. J Magn Reson Imaging, 2011, 34(5): 1 072-1 079. [5] Gao Ming-sheng(高明生), Xie Hai-bin(谢海滨), Yan Xu(严序), et al. Selective dual-direction sequential compressed sensing for dynamic MR imaging(选择性双向顺序压缩感知重建动态磁共振成像)[J]. Chinese J Magn Reson(波谱学杂志), 2013, 30(2): 194-203. [6] Li Hai-dong(李海东), Zhang Zhi-ying(张智颖), Han Ye-qing(韩叶清), et al. Lung MRI using hyperpolarized gases(超极化气体肺部磁共振成像)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(3): 307-320. [7] Lustig M, Donoho D L, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1 182-1 195. [8] Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25(2): 72-82. [9] Ajraoui S, Lee K J, Deppe M H, et al. Compressed sensing in hyperpolarized He-3 lung MRI[J]. Magn Reson Med, 2010, 63(4): 1 059-1 069. [10] Qu X B, Zhang W R, Guo D, et al. Iterative thresholding compressed sensing MRI based on contourlet transform[J]. Inverse Probl Sci En, 2010, 18(6):737-758. [11] Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE T Med Imaging, 2011, 30(5): 1 028-1 041. [12] Qu X B, Guo D, Ning B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magn Reson Imaging, 2012, 30(7): 964-977. [13] Song Y, Zhu Z, Lu Y, et al. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning[J]. Magn Reson Med, 2014, 71(3): 1 285-1 298. [14] Qu X B, Hou Y K, Lam F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Med Image Anal, 2014, 18(6): 843-856. [15] Chen S S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. Siam J Sci Comput, 1998, 20(1): 33-61. [16] Ye J C, Tak S, Han Y, et al. Projection reconstruction MR imaging using FOCUSS[J]. Magn Reson Med, 2007, 57(4): 764-775. [17] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE T Inform Theory, 2006, 52(1): 6-18. [18] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Commun Pur Appl Math, 2004, 57(11): 1 413-1 457. [19] Starck J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational approach[J]. IEEE T Image Process, 2005, 14(10): 1 570-1 582. [20] Elad M, Matalon B, Zibulevsky M. Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization[J]. Appl Comput Harmon Anal, 2007, 23(3): 346-367. [21] Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale l(1)-regularized least squares[J]. IEEE J STSP, 2007, 1(4): 606-617. [22] Ajraoui S, Parra-Robles J, Wild J M. Incorporation of prior knowledge in compressed sensing for faster acquisition of hyperpolarized gas images[J]. Magn Reson Med, 2013, 69(2): 360-369. [23] Imai H, Kimura A, Hori Y, et al. Hyperpolarized 129Xe lung MRI in spontaneously breathing mice with respiratory gated fast imaging and its application to pulmonary functional imaging[J]. NMR Biomed, 2011, 24(10): 1 343-1 352. [24] Pang Y, Zhang X. Interpolated compressed sensing for 2D multiple slice fast MR imaging[J]. PLOS ONE, 2013, 8(2): e56098. [25] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Proc Mag, 2008, 25(2): 21-30. [26] Sun Yu-bao(孙玉宝), Wei Zhi-hui(韦志辉), Wu Min(吴敏), et al. Image poisson denoising using sparse representations (稀疏性正则化的图像泊松去噪算法)[J]. Acta Electronica Sinica(电子学报), 2011, 39(2): 285-290. [27] Fang L, Li S, Nie Q, et al. Sparsity based denoising of spectral domain optical coherence tomography images[J]. Biomedical Opt Express, 2012, 3(5): 927-942. |