Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (2): 154-163.doi: 10.11938/cjmr20243136cstr: 32225.14.cjmr20243136
• Articles • Previous Articles Next Articles
CAO Fei1,2,*(), XU Qianqian1, CHEN Hao1, ZU Jie1, LI Xiaowen1, TIAN Jin1, BAO Lei1
Received:
2024-11-05
Published:
2025-06-05
Online:
2024-12-10
Contact:
*Tel: 18796248083, E-mail: CLC Number:
CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI[J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163.
Fig. 3
Architecture of cross self-supervision. The part of A shows the overall network structure, while the part of B displays the main structure of ResNet50, the part of C displays the main structure of ViT. logits1 is the output of ResNet50, logits2 is the output of ViT, Conv is the convolution operation, and Norm is the normalization layer
Table 3
Performance comparisons of the proposed method and other models
方法 | 准确率/% | 精确率/% | 召回率/% | F1分数 | AUC |
---|---|---|---|---|---|
ViT | 82.75 | 82.80 | 82.55 | 0.8263 | 0.9304 |
ResNet50 | 86.86 | 87.19 | 86.57 | 0.8673 | 0.9625 |
MAE_ViT | 90.78 | 91.26 | 90.49 | 0.9068 | 0.9729 |
CO-ViT | 91.37 | 91.76 | 91.11 | 0.9129 | 0.9704 |
CO-ResNet50 | 95.49 | 95.51 | 95.44 | 0.9547 | 0.9897 |
[1] | WEI Y, WANG C H, ZHANG Y, et al. MRI manifestations of adult-onset neuronal intranuclear inclusion disease[J]. Journal of Zhengzhou University (Medical Sciences), 2024, 59(3): 405-408. |
魏莹, 王彩鸿, 张勇, 等. 成人型神经元核内包涵体病脑MRI表现[J]. 郑州大学学报(医学版), 2024, 59(3): 405-408. | |
[2] | HE W G, WANG W P, LI Y J, et al. MR findings of adult neuronal intranuclear inclusion disease: report of 8 cases and literature review[J]. Radiol Practice, 2022, 37(11): 1343-1346. |
贺伟光, 王维平, 李又洁, 等. 成人型神经元核内包涵体病的颅脑MR表现[J]. 放射学实践, 2022, 37(11): 1343-1346. | |
[3] | CAO Y, WU J, YUE Y, et al. Expanding the clinical spectrum of adult-onset neuronal intranuclear inclusion disease[J]. Acta Neurol Belg, 2022, 122(3): 647-658. |
[4] |
SONE J, MORI K, INAGAKI T, et al. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease[J]. Brain, 2016, 139: 3170-3186.
pmid: 27797808 |
[5] |
SONE J, TANAKA F, KOIKE H, et al. Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease[J]. Neurology, 2011, 76: 1372-1376.
doi: 10.1212/WNL.0b013e3182166e13 pmid: 21411744 |
[6] |
ISHIURA H, SHIBATA S, YOSHIMURA J, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease[J]. Nat Genet, 2019, 51: 1222-1232.
doi: 10.1038/s41588-019-0458-z pmid: 31332380 |
[7] |
ZHU R, QU J, XU G, et al. Clinical and multimodal imaging features of adult-onset neuronal intranuclear inclusion disease[J]. Neurol Sci, 2024, 45: 5795-5805.
doi: 10.1007/s10072-024-07699-y pmid: 39023713 |
[8] | CHEN M, GENG C, LI Y X, et al. Automatic detection for cerebral aneurysms in TOF-MRA images based on fuzzy label and deep learning[J]. Chinese J Magn Reson, 2022, 39(3): 267-277. |
陈萌, 耿辰, 李郁欣, 等. 基于模糊标签和深度学习的TOF-MRA影像脑动脉瘤自动检测[J]. 波谱学杂志, 2022, 39(3): 267-277.
doi: 10.11938/cjmr20223004 |
|
[9] | QIAN C Y, WANG Y J. Research progress on imaging classification of Alzheimer’s disease based on deep learning[J]. Chinese J Magn Reson, 2023, 40(2): 220-238. |
钱程一, 王远军. 基于深度学习的阿尔兹海默症影像学分类研究进展[J]. 波谱学杂志, 2023, 40(2): 220-238.
doi: 10.11938/cjmr20223013 |
|
[10] | CALABRESE E, RUDIE J D, RAUSCHECKER A M, et al. Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma[J]. Neurooncol Adv, 2022, 4(1): vdac060. |
[11] | XUE P Y, GENG C, LI Y X, et al. A Classification Method for Cerebral Aneurysms in TOF-MRA Based on Improved 3D ResNet50 Model[J]. Chinese J Magn Reson, 2025, 42(1): 56-66. |
薛培阳, 耿辰, 李郁欣, 等. 基于改进的3D ResNet50模型的TOF-MRA脑动脉瘤分类方法[J]. 波谱学杂志, 2025, 42(1): 56-66.
doi: 10.11938/cjmr20243119 |
|
[12] | AZIZI S, MUSTAFA B, RYAN F, et al. Big self-supervised models advance medical image classification[C]// International Conference on Computer Vision, 2021: 3458-3468. |
[13] | GHESU F C, GEORGESCU B, MANSOOR A, et al. Contrastive self-supervised learning from 100 million medical images with optional supervision[J]. J Med Imaging (Bellingham), 2022, 9(6): 064503. |
[14] | ZHU Z Y, ZHAO S G. Research on brain tumor medical image classification based on diffusion self-supervised representation learning[J]. Computer Science and Application, 2024, 14(4): 133-140. |
朱泽宇, 赵曙光. 基于扩散模型自监督表征学习的脑瘤医学图像分类研究[J]. 计算机科学与应用, 2024, 14(4): 133-140. | |
[15] | WANG N, LIN S H, QI F L, et al. Self-supervised Learning for Multi-modal Medical Image Segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2025, 37(3): 474-483. |
王楠, 林绍辉, 齐福霖, 等. 基于自监督学习的医学影像异常检测[J]. 计算机辅助设计与图形学学报, 2025, 37(3): 474-483. | |
[16] | XIE Y, ZHANG J, XIA Y, et al. UniMiSS: universal medical self-supervised learning via breaking dimensionality barrier[C]// European Conference on Computer Vision, 2022: 558-575. |
[17] | GONG Y, KHURANA S, ROUDITCHENKO A, et al. CMKD: CNN/Transformerbased cross-model knowledge distillation for audio classification[J]. arXiv: abs/2203.06760, 2022. |
[18] | SINGH P, SIZIKOVA E, CIRRONE J. CASS: Cross architectural self-supervision for medical image analysis[J]. arXiv: abs/2206.04170, 2022. |
[19] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Conference Vision and Pattern Recognition, 2016: 770-778. |
[20] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]// International Conference on Learning Representations, 2020. |
[21] | HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[C]// Conference Vision and Pattern Recognition, 2021: 16000-16009. |
[1] | SUN Haoyun, WANG Lijia. Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 130-142. |
[2] | CHEN Qun, YANG Zijian, CHENG Xinyi, JIA Siyi, DU Xiaoxia, WANG Mengxing. Application of Magnetic Resonance Imaging Technology in Pediatric Exercise Intervention Research [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 195-204. |
[3] | YANG Jiacheng, WANG Yuanjun. Improved Constrained Spherical Deconvolution for Microstructural Imaging of Brain Gray Matter [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 67-79. |
[4] | XUE Peiyang, GENG Chen, LI Yuxin, BAO Yifang, LU Yucheng, DAI Yakang. A Classification Method for Cerebral Aneurysms in TOF-MRA Based on Improved 3D ResNet50 Model [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 56-66. |
[5] | NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468. |
[6] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
[7] | YI Peng, CAO Li, HUANG Zhen, CHENG Xin, WANG Jiaxin, CHEN Li, CHEN Fang, BAO Qingjia, ZHANG Zhi, LIU Chaoyang. Development of Gradient Coils and 1H/13C Dual-resonance RF Coils for a Small-bore 5 T MRI System [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 245-256. |
[8] | CHEN Qi, LI Haidong, FANG Yuan, SHEN Luyang, LIU Wuji, LUO Ming, LI Yecheng, ZHANG Ming, ZHAO Xiuchao, SHI Lei, ZHOU Qian, HAN Yeqing, ZHOU Xin. Association of 129Xe Ventilation Functional MRI with Pulmonary Lesion Types [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 276-285. |
[9] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 341-361. |
[10] | Dai Junlong, He Cong, Wu Jie, Bian Yun. Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 151-161. |
[11] | YANG Yu, CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong. Spectrum Reconstruction for Laplace NMR: From Handcraft Regularization to Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 191-208. |
[12] | CHANG Bo, SUN Haoyun, GAO Qingyu, WANG Lijia. Research Progress on Cardiac Segmentation in Different Modal Medical Images by Traditional Methods and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 224-244. |
[13] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[14] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
[15] | CHEN Mengying, WU Yupeng, PANG Qifan, ZHONG Haodong, LI Gaiying, LI Jianqi. Simultaneously Neuromelanin-sensitive Imaging and Quantitative Susceptibility Mapping in the Whole Brain [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 385-396. |
Viewed | ||||||
Full text 17
|
|
|||||
Abstract |
|
|||||